[1]
N. Osawa and K. Fukuoka, Pit nucleation behavior of aluminum foil for electrolytic capacitors during early stage of DC etching, Corrosion Science, 42(2000), pp.585-597.
DOI: 10.1016/s0010-938x(99)00117-1
Google Scholar
[2]
J. Kang, Y. Shin, Y. Tak, Growth of etch pits formed during sonoelectrochemical etching of aluminum. Electrochimica Acta, 52(2005), pp.1012-1016.
DOI: 10.1016/j.electacta.2005.04.070
Google Scholar
[3]
H. Asoh, K. Nakamura, S. Ono, Control of pit initiation sites on aluminum foil using colloidal craystals as mask. Electrochimica Acta, 53(2007), pp.83-86.
DOI: 10.1016/j.electacta.2007.01.021
Google Scholar
[4]
R. G.Xiao, K. P. Yan, J. X. Yan, J. Z. Wang, Electrochemical etching model in aluminum foil for capacitor. Corrosion Science, 50(2008), pp.1576-1583.
DOI: 10.1016/j.corsci.2008.02.017
Google Scholar
[5]
D. Goad, Tunnel morphology in anodic etching of aluminum. J. Electrochem. Soc., 144(1997), pp.1965-1971.
DOI: 10.1149/1.1837730
Google Scholar
[6]
D. Park, H. Kim, Eelectrochemical etching of aluminum through porous alumina. Analytical Science, 17(2001), pp. a73-a76.
Google Scholar
[7]
J. H. Jang, W. S. Choi, N. J. Kim, et.al, Formation of aluminum tunnel pits arrayed using SU-8 masks with UV-assisted thermal imprint lithography. Microelectronic Engineering, 87 (2010), pp.2610-2613.
DOI: 10.1016/j.mee.2010.07.025
Google Scholar
[8]
J. Lee, J. Kim, J. Kim, et.al, Effects of pretreatment on the aluminum etch pit formation. Corrosion Science, 51(2009), pp.1501-1505.
DOI: 10.1016/j.corsci.2009.02.028
Google Scholar
[9]
S. Doulami, K. Beligiannis, Th. Dimogerontakis,V. Ninni, et.al. The influence of some triphenylmethane compounds on the corrosion inhibition of aluminum. Corrosion Science, p.46 (2004) 1765–1776
DOI: 10.1016/j.corsci.2003.10.014
Google Scholar
[10]
S. Ono, H. Habazaki, Effect of sulfuric acid on pit propagation behaviour of aluminum under AC etch process. Corrosion Science, 51 (2009), pp.2364-2370.
DOI: 10.1016/j.corsci.2009.06.021
Google Scholar
[11]
H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 268 (1995), pp.1466-1468.
DOI: 10.1126/science.268.5216.1466
Google Scholar
[12]
V. P. Parkhutik, V.I. Shershulsky, Theoretical modeling of porous oxide growth on aluminum. J. Phys. D: Appl. Phys., 25 (1992), pp.1258-1263.
DOI: 10.1088/0022-3727/25/8/017
Google Scholar
[13]
H. Asoh, S. Ono, T. Hirose, M. Nakao, H. Masuda, Growth of anodic porous alumina with square cells. Electrochimica Acta, 48 (2003), pp.3171-3174.
DOI: 10.1016/s0013-4686(03)00347-5
Google Scholar
[14]
N. Tasaltm, S. Öztürk, N. Kılınç, H. Yüzer, Z. Z. Öztürk, Simple fabrication of hexagonally well-ordered AAO template on silicon subbtrate in two dimensions. Appl Phys A, 95 (2009), pp.781-787.
DOI: 10.1007/s00339-009-5071-z
Google Scholar
[15]
W. M. Mao, H. Jiang, P. Yang, H. P. Feng, Y. N. Yu, Influence of microstructure and microelements on corrosion structure of aluminum foil. The Chinese Journal of Nonferrous Metals, 14 (2004), pp.1627-1631.
Google Scholar