The Fabrication of Piezoelectric Vibration Energy Harvester Arrays Based on AlN Thin Film

Article Preview

Abstract:

This paper describes the fabrication and measurement results of piezoelectric energy harvester arrays based on aluminum nitride (AlN) as a piezoelectric material. The AlN piezoelectric thin film with crystal orientation (002) and crystal orientation (101) is deposited respectively by pulsed_DC sputtering on the different bottom electrode materials. Based on the AlN thin film, the piezoelectric vibration energy harvester arrays with 5 cantilever beams were developed. Then the load characteristics, frequency characteristics, harvester connected in series and parallel properties of harvester were investigated. In addition, we compare the properties of piezoelectric vibration energy harvester arrays with crystal orientation (101) and (002), where a record max power output of 0.23 μW and 0.38μW are obtained respectively when the value of acceleration was 1 g, while for the latter, the maximum power is 9.13 μW at the acceleration of 5.0g with the optimized resistance of 15 kΩ.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 562-565)

Pages:

942-946

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Knight, J. Davidson, S. Behrens, Sensors-Basel, 8 (2008) 8037-8066.

Google Scholar

[2] A.B. Alamin Dow, H.A. Al-Rubaye, N.P. Kherani, et al., in, IEEE, 2011, pp.1-4.

Google Scholar

[3] C. Moser, D. Brunelli, L. Thiele, et al., Real-Time Systems, 37 (2007) 233-260.

Google Scholar

[4] R. Andosca, T. McDonald, V. Genova, et al., Sensors and Actuators A: Physical, (2012).

Google Scholar

[5] A. Bertacchini, S. Scorcioni, D. Dondi, et al., in, IEEE, 2011, pp.119-122.

Google Scholar

[6] R. Elfrink, S. Matova, C. de Nooijer, et al., in, IEEE, 2011, p.29.25. 21-29.25. 24.

Google Scholar

[7] H.S. Kim, J.H. Kim, J. Kim, International Journal of Precision Engineering and Manufacturing, 12 (2011) 1129-1141.

Google Scholar

[8] S.R. Anton, H.A. Sodano, Smart Materials and Structures, 16 (2007) R1.

Google Scholar

[9] M. Marzencki, Y. Ammar, S. Basrour, Arxiv preprint arXiv:0802.3044, (2008).

Google Scholar

[10] R. Elfrink, V. Pop, D. Hohlfeld, et al., in, IEEE, 2009, pp.1-4.

Google Scholar

[11] R. Elfrink, M. Renaud, T. Kamel, et al., Journal of Micromechanics and Microengineering, 20 (2010) 104001.

Google Scholar

[12] R. Elfrink, T. Kamel, M. Goedbloed, et al., Journal of Micromechanics and Microengineering, 19 (2009) 094005.

Google Scholar

[13] M. Marzencki, M. Defosseux, S. Basrour, Microelectromechanical Systems, Journal of, 18 (2009) 1444-1453.

DOI: 10.1109/jmems.2009.2032784

Google Scholar

[14] R. Van Schaijk, R. Elfrink, T. Kamel, et al., in, IEEE, 2008, pp.45-48.

Google Scholar