Analysis of Lattice Defects in an Epitaxial PbTiO3 Thick Film by Transmission Electron Microscopy

Article Preview

Abstract:

The microstructure of an epitaxial PbTiO3 thick film was investigated by using transmission electron microscopy (TEM). An analysis of bright-field TEM (BFTEM) images revealed the existence of displacements along the [00 direction of PbTiO3. High-resolution TEM (HRTEM) observation indicated that stacking faults parallel to the (001) plane of PbTiO3 are formed in the thick film. Local strain fields around the stacking faults were quantified by geometric phase analysis of the HRTEM image. The measured strain suggested the presence of a pair of extrinsic and intrinsic stacking faults. The distance between an extrinsic stacking fault and an intrinsic one corresponds to two unit cells along the [00 direction of PbTiO3. The formation of these stacking faults is considered to be associated with the strain relaxation of the film.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

171-174

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada and S. Streiffer: J. Appl. Phys., Vol. 100, p.051606 (2006).

DOI: 10.1063/1.2393042

Google Scholar

[2] S. Stemmer, S.K. Streiffer, F. Ernst, M. Rühle, W.Y. Hsu and R. Raj: Solid State Ionics, Vol. 75, p.43 (1995).

DOI: 10.1016/0167-2738(94)00151-h

Google Scholar

[3] S. Stemmer, S.K. Streiffer, F. Ernst and M. Rühle: Phys. Stat. Sol., Vol. (a) 147, p.135 (1995).

DOI: 10.1002/pssa.2211470115

Google Scholar

[4] K. Aoyagi, T. Kiguchi, Y. Ehara, T. Yamada, H. Funakubo and T.J. Konno: Sci. Technol. Adv. Mater., Vol. 12, p.034403 (2011).

Google Scholar

[5] H. Nakaki, Y.K. Kim, S. Yokoyama, R. Ikariyama, H. Funakubo, K. Nishida and K. Saito: Appl. Phys. Lett., Vol. 91, p.112904 (2007).

DOI: 10.1063/1.2779239

Google Scholar

[6] H. Nakaki, Y.K. Kim, S. Yokoyama, R. Ikariyama, H. Funakubo, S.K. Streiffer, K. Nishida, K. Saito and A. Gruverman: J. Appl. Phys., Vol. 104, p.064121 (2008).

DOI: 10.1063/1.2981193

Google Scholar

[7] K. Nagashima, M. Aratani and H. Funakubo: Jpn. J. Appl. Phys., Part 2, Vol. 39, p. L996 (2000).

Google Scholar

[8] K. Nagashima and H. Funakubo: Jpn. J. Appl. Phys., Part 1, Vol. 39, p.212 (2000).

Google Scholar

[9] M.J. Hÿtch, E. Snoeck and R. Kilaas: Ultramicroscopy, Vol. 74, p.131 (1998).

Google Scholar

[10] M.F. Ashby and L.M. Brown: Phil. Mag., Vol. 8, p.1083 (1963).

Google Scholar

[11] M.F. Ashby and L.M. Brown: Phil. Mag., Vol. 8, p.1649 (1963).

Google Scholar

[12] O. Eibl, P. Pongratz, P. Skalicky and H. Schmelz: Phys. Stat. Sol., Vol. (a) 108, p.495 (1988).

DOI: 10.1002/pssa.2211080203

Google Scholar

[13] T. Suzuki, Y. Nishi and M. Fujimoto: Phil. Mag., Vol. A 80, p.621 (2000).

Google Scholar

[14] T. Suzuki, Y. Nishi and M. Fujimoto: J. Am. Ceram. Soc., Vol. 83, p.3185 (2000).

Google Scholar

[15] S.N. Ruddlesden and P. Popper: Acta Cryst., Vol. 10, p.538 (1957).

Google Scholar

[16] S.N. Ruddlesden and P. Popper: Acta Cryst., Vol. 11, p.54 (1958).

Google Scholar