p.1
p.27
p.57
p.71
p.93
p.111
p.133
p.169
Hydrotalcites as Catalysts and Catalysts Precursors for the Synthesis of Biodiesel
Abstract:
This chapter aims at providing an overview of the potential of layered double hydroxides (LDHs) or hydrotalcite-like compounds (HTs) for contributing to the catalysis of the synthesis of biodiesel through the transesterification of triglycerides. First, the main methods of preparation of HTs and the most relevantfeatures of these materials are presented, with emphasis on their basic properties. Afterwards, the literature on the use of HTs as catalysts, catalysts precursors, and supports of transesterification catalysts is reviewed. HTs are promising materials for the synthesis of biodiesel from refined and waste vegetable oils, showing reasonable resistance to water and free fatty acids but an improvement of the chemical stability under the desired reaction conditions is still necessary.
Info:
Periodical:
Pages:
1-26
Citation:
Online since:
July 2013
Authors:
Price:
Сopyright:
© 2013 Trans Tech Publications Ltd. All Rights Reserved
Citation:
[1] F. Cavani, F. Trifirò, A. Vaccari, Hydrotalcite-type anionic clays: Preparation, properties and applications, Catal. Today 11 (1991) 173-301.
[2] G. Centi, S. Perathoner, Catalysis by layered materials: A review, Micropor. Mesopor.Mater.107 (2008) 3-15.
[3] K.-H.Goh, T.-T. Lim, Z. Dong, Application of layered double hydroxides for removal of oxyanions: A review, Water Res. 42 (2008) 1343-1368.
[4] G. Crini, Non-conventional low-cost adsorbents for dye removal: A review, Bioresource Technol. 97 (2006) 1061-1085.
[5] J.-Q. Jiang, S.M. Ashekuzzaman, Development of novel inorganic adsorbent for water treatment, Curr. Opin. Chem. Eng. 1 (2012) 191-199.
[6] C. Del Hoyo, Layered double hydroxides and human health: An overview, Appl. Clay Sci. 36 (2007) 103-121.
[7] U. Costantino, V. Ambrogi, M. Nocchettia, L. Perioli, Hydrotalcite-like compounds: Versatile layered hosts of molecular anions with biological activity, Micropor. Mesopor. Mater.107 (2008) 3-15.
[8] Z. Yong, V. Mata, A.E. Rodrigues, Adsorption of carbon dioxide at high temperature-a review, Sep. Pur. Technol. 26 (2002) 195-205.
[9] Z. Yong, A.E. Rodrigues, Hydrotalcite-like compounds as adsorbents for carbon dioxide, Energy Convers. Manage. 43 (2002) 1865-1876.
[10] S. Albertazzi, F. Basile, A. Vaccari, Catalytic properties of hydrotalcite-type anionic clays, in: F. Wypych, K.G. Satyanarayana (Eds.), Interface Science and Technology, Vol. 1, Clay Surfaces: Fundamentals and Applications, Elsevier, 2004, pp.497-546.
[11] Z.P. Xu, J. Zhang, M.O. Adebajo, H. Zhang, C. Zhou, Catalytic applications of layered double hydroxides and derivatives, Appl. Clay Sci. 53 (2011) 139-150.
[12] H. Hattori, Solid base catalysts: generation of basic sites and application to organic synthesis, Appl. Catal. A: Gen. 222 (2001) 247-259.
[13] W.T. Reichle, Catalytic reactions by thermally activated, synthetic, anionic clay minerals, J. Catal. 94 (1985) 547-557.
[14] B.F. Sels, D.E. De Vos, P.A. Jacobs, Hydrotalcite-like anionic clays in catalytic organic reactions, Catal. Rev. 43 (2001) 443-488.
DOI: 10.1081/cr-120001809
[15] G. Busca, Bases and basic materials in chemical and environmental processes. Liquid versus solid basicity, Chem. Rev. 110 (2010) 2217-2249.
DOI: 10.1021/cr9000989
[16] E. Leclercq, A. Finiels, C. Moreau, Transesterification of rapeseed oil in the presence of basic zeolites and related solid catalysts, J. Am. Oil Chem. Soc. 78 (2001) 1161-1165.
[17] R. Luque, J.C. Lovett, B. Datta, J. Clancy, J.M. Campelo, A.A. Romero, Biodiesel as feasible petrol fuel replacement: a multidisciplinary overview, Energy Environ. Sci. 3 (2010) 1706-1721.
DOI: 10.1039/c0ee00085j
[18] G. Knothe, Biodiesel: Current trends and properties, Topics Catal. 53 (2010) 714-720.
[19] S.N. Djomo, R. Ceulemans, A comparative analysis of the carbon intensity of biofuels caused by land use changes, GCB Bioenergy 4 (2012) 392-407.
[20] S. Pinzi, I.L. Garcia, F.J. Lopez-Gimenez, M.D. Luque de Castro, G. Dorado, M.P. Dorado, The ideal vegetable oil-based biodiesel composition: A review of social, economical and technical implications, Energy Fuels 23 (2009) 2325-2341.
DOI: 10.1021/ef801098a
[21] G. Knothe, Biodiesel and renewable diesel: A comparison, Prog. Energy Combust. Sci. 36 (2010) 364-373.
[22] V.B. Borugadda, V.V. Goud, Biodiesel production from renewable feedstocks: Status and opportunties, Renew. Sustain. Energy Rev. 16 (2012) 4763-4784.
[23] Directive 2009/28/EC of the European parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources, Off. J. Eur. Union L140 (2009) 16–62.
[24] EUROBSERV'ER, Biofuels Barometer. July 2012, 42-62.
[25] M. Balat, H. Balat, Progress in biodiesel processing, Appl. Energy 87 (2010) 1815-1835.
[26] E. Santacesaria, G. Martinez Vicente, M. Di Serio, R. Tesser, Main technologies in biodiesel production: State of the art and future challenges, Catal. Today 195 (2012) 2-13.
[27] A.P. Vyas, J.L. Verma, N. Subrahmanyam, A review on FAME production processes, Fuel 89 (2010) 1-9.
[28] O.S. Stamenković, A.V. Veličković, V.B. Veljković, The production of biodiesel from vegetable oils by ethanolysis: current state and perspectives, Fuel 90 (2011) 3141-3155.
[29] G.L. Maddikeri, A.B. Pandit, P.R. Gogate, Intensification approaches for biodiesel synthesis from waste cooking oil: a review, Ind. Eng. Chem. Res. 51 (2012) 14610-14628.
DOI: 10.1021/ie301675j
[30] A. Talebian-Kiakalaieh, N.A.S. Amin, H. Mazaheri, A review on novel processes of biodiesel production from waste cooking oil, Appl. Energy 104 (2013) 683-710.
[31] A. Vaccari, Preparation and catalytic properties of cationic and anionic clays, Catal. Today 41 (1998) 53-71.
[32] Z. Helwani, M.R. Othman, N. Aziz, J. Kim, W.J.N. Fernando, Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review, Appl. Catal. A: Gen. 363 (2009) 1-10.
[33] D.P. Debecker, E.M. Gaigneaux, G. Busca, Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis, Chem. Eur. J. 15 (2009) 3920-3935.
[34] J.F.P. Gomes, J.F.B. Puna, L.M. Gonçalves, J.C.M. Bordado, Study on the use of MgAl hydrotalcites as solid heterogeneous catalysts for biodiesel production, Energy 36 (2011) 6770-6778.
[35] J.M. Fraile, N. García, J.A. Mayoral, E. Pires, L. Roldán, The basicity of mixed oxides and the influence of alkaline metals: The case of transesterification reactions, Appl. Catal. A: Gen. 387 (2010) 67-74.
[36] D.G. Cantrell, L.J. Gillie, A.F. Lee, K. Wilson, Structure-reactivity correlations in MgAl hydrotalcite catalyst for biodiesel synthesis, Appl. Catal. A: Gen. 287 (2005) 183-190.
[37] K.G. Georgogianni, A.P. Katsoulidis, P.J. Pomonis, M.G. Kontominas, Transesterification of soybean frying oil to biodiesel using heterogeneous catalysts, Fuel Process. Technol. 90 (2009) 671-676.
[38] H.-Y. Zeng, X. Deng, Y.-J.Wang, K.-B.Liao, Preparation of Mg-Al hydrotalcite by urea method and its catalytic activity for transesterification, AIChE J. 55 (2009) 1229-1235.
DOI: 10.1002/aic.11722
[39] X. Deng, Z. Fang, Y.-H. Liu, C.-L. Yu, Production of biodiesel from Jatropha oil catalyzed bynanosized solid basic catalyst, Energy 36 (2011) 777-784.
[40] X. Liu, B. Fan, S. Gao, R. Li, Transesterification of tributyrin with methanol over MgAl mixed oxides derived from hydrotalcites synthesized in the presence of glucose, Fuel Process. Technol. 106 (2013) 761-768.
[41] J. Tantirungrotechai, P.Chotmongkolsap, M. Pohmakotr, Synthesis, characterization, and activity in transesterification of mesoporous Mg-Al mixed-metal oxides, Micropor. Mesopor. Mater. 128 (2010) 41-47.
[42] J.L. Shumaker, C. Crofcheck, S.A. Tackett, E. Santillan-Jimenez, M. Crocker, Biodiesel production from soybean oil using calcined Li-Al layered double hydroxide catalysts, Catal. Lett. 115 (2007) 56-61.
[43] J.L. Shumaker, C. Crofcheck, S.A. Tackett, E. Santillan-Jimenez, T. Morgan, Y. Ji, M. Crocker, T.J. Toops, Biodiesel synthesis using calcined layered double hydroxide catalysts, Appl. Catal. B: Environ. 82 (2008) 120-130.
[44] I. Cota, E. Ramírez, F. Medina, J.E. Sueiras, G. Layrac, R. Chebout, D. Tichit, Alkaline-earth-doped mixed oxides obtained from LDH nanocomposites as highly basic catalysts, Catal. Today 152 (2010) 115-118.
[45] I. Cota, E. Ramírez, F. Medina, J.E. Sueiras, G. Layrac, D. Tichit, Highly basic catalysts obtained by intercalation of La-containing anionic complexes in layered double hydroxides, Appl. Catal. A: Gen. 382 (2010) 272-276.
[46] G. Wu, X. Wang, W. Wei, Y. Sun, Fluorine-modified Mg-Al mixed oxides: A solid base with variable basic sites and tunable basicity, Appl. Catal. A: Gen. 377 (2010) 107-113.
[47] S.-H. Wang, Y.-B. Wang, Y.-M. Dai, J.-M. Jehng, Preparation and characterisation of hydrotalcite-like compounds containing transition metal as a solid base catalyst for the transesterification, Appl. Catal. A: Gen. 439-440 (2012) 135-141.
[48] L. Bournay, D. Casanave, B. Delfort, G. Hillion, J.A. Chodorge, New heterogeneous process for biodiesel production: A way to improve the quality and the value of the crude glycerine produced by biodiesel plants, Catal. Today 106 (2005) 190-192.
[49] W. Jiang, H.-f.Lu, T. Qi, S.-l.Yan, B. Liang, Preparation, application, and optimization of Zn/Al complex oxides for biodiesel production under sub-critical conditions, Biotechnol. Adv. 28 (2010) 620-627.
[50] T. Montanari, M. Sisani, M. Nocchetti, R. Vivani, M.C. Herrera Delgado, G. Ramis, G. Busca, U. Costantino, Zinc-aluminum hydrotalcites as precursors of basic catalysts: Preparation, characterization and study of the activation of methanol, Catal. Today 152 (2010) 104-109.
[51] Y. Liu, E. Lotero, J.G. Goodwin Jr., X. Mo, Transesterification of poultry fat with methanol using Mg-Al hydrotalcite derived catalysts, Appl. Catal. A: Gen. 331 (2007) 138-148.
[52] C.C.C.M. Silva, N.F.P. Ribeiro, M.M.V.M. Souza, D.A.G. Aranda, Biodiesel production from soybean oil and methanol using hydrotalcites as catalyst, Fuel Process. Technol. 91 (2010) 205-210.
[53] J. Rocha, M. delArco, V. Rives, M.A. Ulibarri, Reconstruction of layered double hydroxides from calcined precursors: a powder XRD and 27Al MAS NMR study, J. Mater. Chem. 9 (1999) 2499-2503.
DOI: 10.1039/a903231b
[54] F. Kooli, C. Depège, A. Ennaqadi, A. de Roy, J.P. Besse, Rehydratation of Zn-Al layered double hydroxides, Clays Clay Min. 45 (1997) 92-98.
[55] V. Rives, Characterization of layered double hydroxides and their decomposition products, Mater. Chem. Phys. 75 (2002) 19-25.
[56] M. Mokhtar, A. Inayat, J. Ofili, W. Schwieger, Thermal decomposition, gas phase hydration and liquid phase reconstruction in the system Mg/Al hydrotalcite/mixed oxide: A comparative study, Appl. Clay Sci. 50 (2010) 176-181.
[57] A. Navajas, I. Campo, G. Arzamendi, W.Y. Hernández, L.F. Bobadilla, M.A. Centeno, J.A. Odriozola, L.M. Gandía, Synthesis of biodiesel from the methanolysis of sunflower oil using PURAL® Mg-Al hydrotalcites as catalyst precursors, Appl. Catal. B: Environ. 100 (2010) 299-309.
[58] Y. Xi, R.J. Davis, Influence of water on the activity and stability of activated Mg-Al hydrotalcites for the transesterification of tributyrin with methanol, J. Catal. 254 (2008) 190-197.
[59] J.T. Kloprogge, R.L. Frost, Infrared emission spectroscopic study of the thermal transformation of Mg-, Ni- and Co-hydrotalcite, Appl. Catal. A: Gen. 184 (1999) 61-71.
[60] S. Abelló, F. Medina, D. Tichit, J. Pérez-Ramírez, J.C. Groen, J.E. Sueiras, P. Salagre, Y. Cesteros, Aldol condensations over reconstructed Mg-Al hydrotalcites: Structure-activity relationships related to the rehydration method, Chem. Eur. J. 11 (2005) 728-739.
[61] M.R. Othman, N.M. Rasid, W.J.N. Fernando, Effects of thermal treatment on the micro-structures of co-precipitated and sol-gel synthesized (Mg-Al) hydrotalcites, Micropor. Mesopor.Mater. 93 (2006) 23-28.
[62] B. Li, J. He, D.G. Evans, Experimental investigation of sheet flexibility of layered double hydroxides: One-pot morphosynthesis of inorganic intercalates, Chem. Eng. J. 144 (2008) 124-137.
[63] T.E. Johnson, W. Martens, R.L. Frost, Z. Ding, J.T. Kloprogge, Structured water in hydrotalcites of formula MgxZn6-xAl2(OH)16(CO3)·4H2O: a Raman microscopic study, J. Raman Spectrosc. 33 (2002) 604-609.
DOI: 10.1002/jrs.886
[64] M. Di Serio, R. Tesser, L. Pengmei, E. Santacesaria, Heterogeneous catalysts for biodiesel production, Energy Fuels, 22 (2008) 207-217.
DOI: 10.1021/ef700250g
[65] E. Lotero, J.G. Goodwin Jr., D.A. Bruce, K. Suwannakarn, Y. Liu, D.E. López, The Catalysis of Biodiesel Synthesis in:J.J. Spivey, K.M. Dooley (Eds.), Specialist Periodical Reports – Catalysis, Vol. 19, The Royal Society of Chemistry, Cambridge, UK, 2006, pp.41-84.
[66] E. Lotero, Y. Liu, D.E. Lopez, K. Suwannakarn, D.A. Bruce, J.G. Goodwin, Jr., Synthesis of biodiesel via acid catalysis, Ind. Eng. Chem. Res. 44 (2005) 5353-5363.
DOI: 10.1021/ie049157g
[67] K. Wilson, A.F. Lee, Rational design of heterogeneous catalysts for biodiesel synthesis, Catal. Sci. Technol. 2 (2012) 884-897.
DOI: 10.1039/c2cy20038d
[68] M. Di Serio, M. Ledda, M. Cozzolino, G. Minutillo, R. Tesser, E. Santacesaria, Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts, Ind. Eng. Chem. Res. 45 (2006) 3009-3014.
DOI: 10.1021/ie051402o
[69] C.S. Castro, D. Cardoso, P.A.P. Nascente, J.M. Assaf, MgAlLi mixed oxides derived from hydrotalcites for catalytic transesterification, Catal. Lett. 141 (2011) 1316-1323.
[70] A. Navajas, G. Arzamendi, F. Romero-Sarria, M.A. Centeno, J.A. Odriozola, L.M. Gandía, DRIFTS study of methanol adsorption on Mg-Al hydrotalcite catalysts for the transesterification of vegetable oils, Catal. Commun. 17 (2012) 189-193.
[71] D.-W. Lee, Y.-M. Park, K.-Y. Lee, Heterogeneous base catalysts for transesterification in biodiesel synthesis, Catal.Surv. Asia 13 (2009) 63-77.
[72] M. Zabeti, W.M.A.W. Daud, M.K. Aroua, Activity of solid catalysts for biodiesel production: A review, Fuel Process. Technol. 90 (2009) 770-777.
[73] S. Yan, C. DiMaggio, S. Mohan, M. Kim, S.O. Salley, K.Y. Simon Ng, Advancements in heterogeneous catalysis for biodiesel synthesis, Topics Catal. 53 (2010) 721-736.
[74] A.K. Endalew, Y. Kiros, R. Zanzi, Inorganic heterogeneous catalysts for biodiesel production from vegetable oils, Biomass Bioenergy 35 (2011) 3787-3809.
[75] Y.C. Sharma, B. Singh, J. Korstad, Latest developments on application of heterogeneous basic catalysts for an efficient and eco friendly synthesis of biodiesel: A review, Fuel 90 (2011) 1309-1324.
[76] A.P. Singh Chouhan, A.K. Sarma, Modern heterogeneous catalysts for biodiesel production: A comprehensive review, Renew. Sustain. Energy Rev. 15 (2011) 4378-4399.
[77] S. Semwal, A.K. Arora, R.P. Badoni, D.K. Tuli, Biodiesel production using heterogeneous catalysts, Bioresource Technol. 102 (2011) 2151-2161.
[78] M.E. Borges, L. Díaz, Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review, Renew. Sustain. Energy Rev. 16 (2012) 2839-2849.
[79] A. Islam, Y.H. Taufiq-Yap, C.-M.Chu, E.-S. Chan, P. Ravindra, Studies on design of heterogeneous catalysts for biodiesel production, Process. Safety Environ. Protect. 91 (2013) 131-144.
[80] W. Xie, H. Peng, L. Chen, Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil, J. Mol. Catal. A: Chem. 246 (2006) 24-32.
[81] H. Zeng, Z. Feng, X. Deng, Y. Li, Activation of Mg-Al hydrotalcite catalysts for transesterification of rape oil, Fuel 87 (2008) 3071-3076.
[82] H.-J. Kim, B.-S. Kang, M.-J. Kim, Y. M. Park, D.-K. Kim, J.-S. Lee, K.-Y. Lee, Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst, Catal. Today 93-95 (2004) 315-320.
[83] N. Barakos, S. Pasias, N. Papayannakos, Transesterification of triglycerides in high and low quality oil feeds over an HT2 hydrotalcite catalyst, Bioresource Technol. 99 (2008) 5037-5042.
[84] R. Sree, N. S. Babu, P. S. Sai Prasad, N. Lingaiah, Transesterification of edible and non-edible oils over basic solid Mg/Zr catalysts, Fuel Process. Technol. 90 (2009) 152-157.
[85] A. Corma, S. B. A. Hamid, S. Iborra, A. Velty, Lewis and Brönsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides, J. Catal. 234 (2005) 340-347.
[86] M. A. Olutoye, B. H. Hameed, Production of biodiesel fuel by transesterification ofdifferent vegetable oils with methanol using Al2O3 modified MgZnO catalyst, Bioresource Technol.
[87] R. Rahul, J.K. Satyarthi, D. Srinivas, Lanthanum and zinc incorporated hydrotalcites as solid base catalysts for biodiesel and biolubricants production, Ind. Eng. Chem. Res. 50 (2011) 1017–1025.
[88] A.P. Soares Dias, J. Bernardo, P.Felizardo, M.J. Neiva Correia, Biodiesel production over thermal activated cerium modified Mg-Al hydrotalcites, Energy 41 (2012) 344-353.
[89] M.J. Climent, A. Corma, S. Iborra, A. Velty, Designing the adequate base solid catalyst with Lewis or Bronsted basic sites or with acid–base pairs, J. Mol. Catal. A: Chem. 182 (2002) 327-342.
[90] M. R. Hernández, J. A. Reyes-Labarta, F. J. Valdés, New heterogeneous catalytic transesterification of vegetable and used frying oil, Ind. Eng. Chem. Res. 49 (2010) 9068-9076.
DOI: 10.1021/ie100978m
[91] V.K. Díez, C.R. Apesteguía, J.I. Di Cosimo, Aldol condensation of citral with acetone on MgO and alkali-promoted MgO catalysts, J. Catal. 240 (2006) 235-244.
[92] W. Trakarnpruk, S. Porntangjitlikit, Palmoilbiodiesel synthesized with potassium loaded calcined hydrotalcite and effectofbiodieselblendonelastomerproperties, Renew. Energy 33 (2008) 1558-1563.
[93] G.Teng, L.Gao, G. Xiao, H. Liu, J.Lv, Biodiesel preparation from Jatrophacurcas oil catalyzed by hydrotalcite loaded with K2CO3, Appl. Biochem. Biotechnol. 162 (2010) 1725-1736.
[94] L. Gao, G. Teng, G. Xiao, R. Wei, Biodiesel from palm oil via loading KF/Ca-Al hydrotalcite catalyst, Biomass Bioenergy 34 (2010) 1283-1288.
[95] H. Zeng, K. Liao, X. Deng, H. Jiang, F. Zhang, Characterization of the lipase immobilized on Mg-Al hydrotalcite for biodiesel, Process. Biochem. 44 (2009) 791-798.
[96] F. Yagiz, D. Kazan, A. N. Akin, Biodiesel production from waste oils by using lipaseimmobilized on hydrotalcite and zeolites, Chem. Eng. J. 134(2007) 262-267.