Hydrotalcites as Catalysts and Catalysts Precursors for the Synthesis of Biodiesel

Article Preview

Abstract:

This chapter aims at providing an overview of the potential of layered double hydroxides (LDHs) or hydrotalcite-like compounds (HTs) for contributing to the catalysis of the synthesis of biodiesel through the transesterification of triglycerides. First, the main methods of preparation of HTs and the most relevantfeatures of these materials are presented, with emphasis on their basic properties. Afterwards, the literature on the use of HTs as catalysts, catalysts precursors, and supports of transesterification catalysts is reviewed. HTs are promising materials for the synthesis of biodiesel from refined and waste vegetable oils, showing reasonable resistance to water and free fatty acids but an improvement of the chemical stability under the desired reaction conditions is still necessary.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-26

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Cavani, F. Trifirò, A. Vaccari, Hydrotalcite-type anionic clays: Preparation, properties and applications, Catal. Today 11 (1991) 173-301.

DOI: 10.1016/0920-5861(91)80068-k

Google Scholar

[2] G. Centi, S. Perathoner, Catalysis by layered materials: A review, Micropor. Mesopor.Mater.107 (2008) 3-15.

Google Scholar

[3] K.-H.Goh, T.-T. Lim, Z. Dong, Application of layered double hydroxides for removal of oxyanions: A review, Water Res. 42 (2008) 1343-1368.

DOI: 10.1016/j.watres.2007.10.043

Google Scholar

[4] G. Crini, Non-conventional low-cost adsorbents for dye removal: A review, Bioresource Technol. 97 (2006) 1061-1085.

DOI: 10.1016/j.biortech.2005.05.001

Google Scholar

[5] J.-Q. Jiang, S.M. Ashekuzzaman, Development of novel inorganic adsorbent for water treatment, Curr. Opin. Chem. Eng. 1 (2012) 191-199.

Google Scholar

[6] C. Del Hoyo, Layered double hydroxides and human health: An overview, Appl. Clay Sci. 36 (2007) 103-121.

Google Scholar

[7] U. Costantino, V. Ambrogi, M. Nocchettia, L. Perioli, Hydrotalcite-like compounds: Versatile layered hosts of molecular anions with biological activity, Micropor. Mesopor. Mater.107 (2008) 3-15.

DOI: 10.1016/j.micromeso.2007.02.005

Google Scholar

[8] Z. Yong, V. Mata, A.E. Rodrigues, Adsorption of carbon dioxide at high temperature-a review, Sep. Pur. Technol. 26 (2002) 195-205.

Google Scholar

[9] Z. Yong, A.E. Rodrigues, Hydrotalcite-like compounds as adsorbents for carbon dioxide, Energy Convers. Manage. 43 (2002) 1865-1876.

DOI: 10.1016/s0196-8904(01)00125-x

Google Scholar

[10] S. Albertazzi, F. Basile, A. Vaccari, Catalytic properties of hydrotalcite-type anionic clays, in: F. Wypych, K.G. Satyanarayana (Eds.), Interface Science and Technology, Vol. 1, Clay Surfaces: Fundamentals and Applications, Elsevier, 2004, pp.497-546.

DOI: 10.1016/s1573-4285(04)80052-8

Google Scholar

[11] Z.P. Xu, J. Zhang, M.O. Adebajo, H. Zhang, C. Zhou, Catalytic applications of layered double hydroxides and derivatives, Appl. Clay Sci. 53 (2011) 139-150.

DOI: 10.1016/j.clay.2011.02.007

Google Scholar

[12] H. Hattori, Solid base catalysts: generation of basic sites and application to organic synthesis, Appl. Catal. A: Gen. 222 (2001) 247-259.

DOI: 10.1016/s0926-860x(01)00839-0

Google Scholar

[13] W.T. Reichle, Catalytic reactions by thermally activated, synthetic, anionic clay minerals, J. Catal. 94 (1985) 547-557.

DOI: 10.1016/0021-9517(85)90219-2

Google Scholar

[14] B.F. Sels, D.E. De Vos, P.A. Jacobs, Hydrotalcite-like anionic clays in catalytic organic reactions, Catal. Rev. 43 (2001) 443-488.

DOI: 10.1081/cr-120001809

Google Scholar

[15] G. Busca, Bases and basic materials in chemical and environmental processes. Liquid versus solid basicity, Chem. Rev. 110 (2010) 2217-2249.

DOI: 10.1021/cr9000989

Google Scholar

[16] E. Leclercq, A. Finiels, C. Moreau, Transesterification of rapeseed oil in the presence of basic zeolites and related solid catalysts, J. Am. Oil Chem. Soc. 78 (2001) 1161-1165.

DOI: 10.1007/s11746-001-0406-9

Google Scholar

[17] R. Luque, J.C. Lovett, B. Datta, J. Clancy, J.M. Campelo, A.A. Romero, Biodiesel as feasible petrol fuel replacement: a multidisciplinary overview, Energy Environ. Sci. 3 (2010) 1706-1721.

DOI: 10.1039/c0ee00085j

Google Scholar

[18] G. Knothe, Biodiesel: Current trends and properties, Topics Catal. 53 (2010) 714-720.

DOI: 10.1007/s11244-010-9457-0

Google Scholar

[19] S.N. Djomo, R. Ceulemans, A comparative analysis of the carbon intensity of biofuels caused by land use changes, GCB Bioenergy 4 (2012) 392-407.

DOI: 10.1111/j.1757-1707.2012.01176.x

Google Scholar

[20] S. Pinzi, I.L. Garcia, F.J. Lopez-Gimenez, M.D. Luque de Castro, G. Dorado, M.P. Dorado, The ideal vegetable oil-based biodiesel composition: A review of social, economical and technical implications, Energy Fuels 23 (2009) 2325-2341.

DOI: 10.1021/ef801098a

Google Scholar

[21] G. Knothe, Biodiesel and renewable diesel: A comparison, Prog. Energy Combust. Sci. 36 (2010) 364-373.

Google Scholar

[22] V.B. Borugadda, V.V. Goud, Biodiesel production from renewable feedstocks: Status and opportunties, Renew. Sustain. Energy Rev. 16 (2012) 4763-4784.

DOI: 10.1016/j.rser.2012.04.010

Google Scholar

[23] Directive 2009/28/EC of the European parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources, Off. J. Eur. Union L140 (2009) 16–62.

Google Scholar

[24] EUROBSERV'ER, Biofuels Barometer. July 2012, 42-62.

Google Scholar

[25] M. Balat, H. Balat, Progress in biodiesel processing, Appl. Energy 87 (2010) 1815-1835.

DOI: 10.1016/j.apenergy.2010.01.012

Google Scholar

[26] E. Santacesaria, G. Martinez Vicente, M. Di Serio, R. Tesser, Main technologies in biodiesel production: State of the art and future challenges, Catal. Today 195 (2012) 2-13.

DOI: 10.1016/j.cattod.2012.04.057

Google Scholar

[27] A.P. Vyas, J.L. Verma, N. Subrahmanyam, A review on FAME production processes, Fuel 89 (2010) 1-9.

Google Scholar

[28] O.S. Stamenković, A.V. Veličković, V.B. Veljković, The production of biodiesel from vegetable oils by ethanolysis: current state and perspectives, Fuel 90 (2011) 3141-3155.

DOI: 10.1016/j.fuel.2011.06.049

Google Scholar

[29] G.L. Maddikeri, A.B. Pandit, P.R. Gogate, Intensification approaches for biodiesel synthesis from waste cooking oil: a review, Ind. Eng. Chem. Res. 51 (2012) 14610-14628.

DOI: 10.1021/ie301675j

Google Scholar

[30] A. Talebian-Kiakalaieh, N.A.S. Amin, H. Mazaheri, A review on novel processes of biodiesel production from waste cooking oil, Appl. Energy 104 (2013) 683-710.

DOI: 10.1016/j.apenergy.2012.11.061

Google Scholar

[31] A. Vaccari, Preparation and catalytic properties of cationic and anionic clays, Catal. Today 41 (1998) 53-71.

DOI: 10.1016/s0920-5861(98)00038-8

Google Scholar

[32] Z. Helwani, M.R. Othman, N. Aziz, J. Kim, W.J.N. Fernando, Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review, Appl. Catal. A: Gen. 363 (2009) 1-10.

DOI: 10.1016/j.apcata.2009.05.021

Google Scholar

[33] D.P. Debecker, E.M. Gaigneaux, G. Busca, Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis, Chem. Eur. J. 15 (2009) 3920-3935.

DOI: 10.1002/chem.200900060

Google Scholar

[34] J.F.P. Gomes, J.F.B. Puna, L.M. Gonçalves, J.C.M. Bordado, Study on the use of MgAl hydrotalcites as solid heterogeneous catalysts for biodiesel production, Energy 36 (2011) 6770-6778.

DOI: 10.1016/j.energy.2011.10.024

Google Scholar

[35] J.M. Fraile, N. García, J.A. Mayoral, E. Pires, L. Roldán, The basicity of mixed oxides and the influence of alkaline metals: The case of transesterification reactions, Appl. Catal. A: Gen. 387 (2010) 67-74.

DOI: 10.1016/j.apcata.2010.08.002

Google Scholar

[36] D.G. Cantrell, L.J. Gillie, A.F. Lee, K. Wilson, Structure-reactivity correlations in MgAl hydrotalcite catalyst for biodiesel synthesis, Appl. Catal. A: Gen. 287 (2005) 183-190.

DOI: 10.1016/j.apcata.2005.03.027

Google Scholar

[37] K.G. Georgogianni, A.P. Katsoulidis, P.J. Pomonis, M.G. Kontominas, Transesterification of soybean frying oil to biodiesel using heterogeneous catalysts, Fuel Process. Technol. 90 (2009) 671-676.

DOI: 10.1016/j.fuproc.2008.12.004

Google Scholar

[38] H.-Y. Zeng, X. Deng, Y.-J.Wang, K.-B.Liao, Preparation of Mg-Al hydrotalcite by urea method and its catalytic activity for transesterification, AIChE J. 55 (2009) 1229-1235.

DOI: 10.1002/aic.11722

Google Scholar

[39] X. Deng, Z. Fang, Y.-H. Liu, C.-L. Yu, Production of biodiesel from Jatropha oil catalyzed bynanosized solid basic catalyst, Energy 36 (2011) 777-784.

DOI: 10.1016/j.energy.2010.12.043

Google Scholar

[40] X. Liu, B. Fan, S. Gao, R. Li, Transesterification of tributyrin with methanol over MgAl mixed oxides derived from hydrotalcites synthesized in the presence of glucose, Fuel Process. Technol. 106 (2013) 761-768.

DOI: 10.1016/j.fuproc.2012.10.014

Google Scholar

[41] J. Tantirungrotechai, P.Chotmongkolsap, M. Pohmakotr, Synthesis, characterization, and activity in transesterification of mesoporous Mg-Al mixed-metal oxides, Micropor. Mesopor. Mater. 128 (2010) 41-47.

DOI: 10.1016/j.micromeso.2009.08.001

Google Scholar

[42] J.L. Shumaker, C. Crofcheck, S.A. Tackett, E. Santillan-Jimenez, M. Crocker, Biodiesel production from soybean oil using calcined Li-Al layered double hydroxide catalysts, Catal. Lett. 115 (2007) 56-61.

DOI: 10.1007/s10562-007-9071-3

Google Scholar

[43] J.L. Shumaker, C. Crofcheck, S.A. Tackett, E. Santillan-Jimenez, T. Morgan, Y. Ji, M. Crocker, T.J. Toops, Biodiesel synthesis using calcined layered double hydroxide catalysts, Appl. Catal. B: Environ. 82 (2008) 120-130.

DOI: 10.1016/j.apcatb.2008.01.010

Google Scholar

[44] I. Cota, E. Ramírez, F. Medina, J.E. Sueiras, G. Layrac, R. Chebout, D. Tichit, Alkaline-earth-doped mixed oxides obtained from LDH nanocomposites as highly basic catalysts, Catal. Today 152 (2010) 115-118.

DOI: 10.1016/j.cattod.2009.08.004

Google Scholar

[45] I. Cota, E. Ramírez, F. Medina, J.E. Sueiras, G. Layrac, D. Tichit, Highly basic catalysts obtained by intercalation of La-containing anionic complexes in layered double hydroxides, Appl. Catal. A: Gen. 382 (2010) 272-276.

DOI: 10.1016/j.apcata.2010.05.006

Google Scholar

[46] G. Wu, X. Wang, W. Wei, Y. Sun, Fluorine-modified Mg-Al mixed oxides: A solid base with variable basic sites and tunable basicity, Appl. Catal. A: Gen. 377 (2010) 107-113.

DOI: 10.1016/j.apcata.2010.01.023

Google Scholar

[47] S.-H. Wang, Y.-B. Wang, Y.-M. Dai, J.-M. Jehng, Preparation and characterisation of hydrotalcite-like compounds containing transition metal as a solid base catalyst for the transesterification, Appl. Catal. A: Gen. 439-440 (2012) 135-141.

DOI: 10.1016/j.apcata.2012.06.049

Google Scholar

[48] L. Bournay, D. Casanave, B. Delfort, G. Hillion, J.A. Chodorge, New heterogeneous process for biodiesel production: A way to improve the quality and the value of the crude glycerine produced by biodiesel plants, Catal. Today 106 (2005) 190-192.

DOI: 10.1016/j.cattod.2005.07.181

Google Scholar

[49] W. Jiang, H.-f.Lu, T. Qi, S.-l.Yan, B. Liang, Preparation, application, and optimization of Zn/Al complex oxides for biodiesel production under sub-critical conditions, Biotechnol. Adv. 28 (2010) 620-627.

DOI: 10.1016/j.biotechadv.2010.05.011

Google Scholar

[50] T. Montanari, M. Sisani, M. Nocchetti, R. Vivani, M.C. Herrera Delgado, G. Ramis, G. Busca, U. Costantino, Zinc-aluminum hydrotalcites as precursors of basic catalysts: Preparation, characterization and study of the activation of methanol, Catal. Today 152 (2010) 104-109.

DOI: 10.1016/j.cattod.2009.09.012

Google Scholar

[51] Y. Liu, E. Lotero, J.G. Goodwin Jr., X. Mo, Transesterification of poultry fat with methanol using Mg-Al hydrotalcite derived catalysts, Appl. Catal. A: Gen. 331 (2007) 138-148.

DOI: 10.1016/j.apcata.2007.07.038

Google Scholar

[52] C.C.C.M. Silva, N.F.P. Ribeiro, M.M.V.M. Souza, D.A.G. Aranda, Biodiesel production from soybean oil and methanol using hydrotalcites as catalyst, Fuel Process. Technol. 91 (2010) 205-210.

DOI: 10.1016/j.fuproc.2009.09.019

Google Scholar

[53] J. Rocha, M. delArco, V. Rives, M.A. Ulibarri, Reconstruction of layered double hydroxides from calcined precursors: a powder XRD and 27Al MAS NMR study, J. Mater. Chem. 9 (1999) 2499-2503.

DOI: 10.1039/a903231b

Google Scholar

[54] F. Kooli, C. Depège, A. Ennaqadi, A. de Roy, J.P. Besse, Rehydratation of Zn-Al layered double hydroxides, Clays Clay Min. 45 (1997) 92-98.

DOI: 10.1346/ccmn.1997.0450111

Google Scholar

[55] V. Rives, Characterization of layered double hydroxides and their decomposition products, Mater. Chem. Phys. 75 (2002) 19-25.

Google Scholar

[56] M. Mokhtar, A. Inayat, J. Ofili, W. Schwieger, Thermal decomposition, gas phase hydration and liquid phase reconstruction in the system Mg/Al hydrotalcite/mixed oxide: A comparative study, Appl. Clay Sci. 50 (2010) 176-181.

DOI: 10.1016/j.clay.2010.07.019

Google Scholar

[57] A. Navajas, I. Campo, G. Arzamendi, W.Y. Hernández, L.F. Bobadilla, M.A. Centeno, J.A. Odriozola, L.M. Gandía, Synthesis of biodiesel from the methanolysis of sunflower oil using PURAL® Mg-Al hydrotalcites as catalyst precursors, Appl. Catal. B: Environ. 100 (2010) 299-309.

DOI: 10.1016/j.apcatb.2010.08.006

Google Scholar

[58] Y. Xi, R.J. Davis, Influence of water on the activity and stability of activated Mg-Al hydrotalcites for the transesterification of tributyrin with methanol, J. Catal. 254 (2008) 190-197.

DOI: 10.1016/j.jcat.2007.12.008

Google Scholar

[59] J.T. Kloprogge, R.L. Frost, Infrared emission spectroscopic study of the thermal transformation of Mg-, Ni- and Co-hydrotalcite, Appl. Catal. A: Gen. 184 (1999) 61-71.

DOI: 10.1016/s0926-860x(99)00084-8

Google Scholar

[60] S. Abelló, F. Medina, D. Tichit, J. Pérez-Ramírez, J.C. Groen, J.E. Sueiras, P. Salagre, Y. Cesteros, Aldol condensations over reconstructed Mg-Al hydrotalcites: Structure-activity relationships related to the rehydration method, Chem. Eur. J. 11 (2005) 728-739.

DOI: 10.1002/chem.200400409

Google Scholar

[61] M.R. Othman, N.M. Rasid, W.J.N. Fernando, Effects of thermal treatment on the micro-structures of co-precipitated and sol-gel synthesized (Mg-Al) hydrotalcites, Micropor. Mesopor.Mater. 93 (2006) 23-28.

DOI: 10.1016/j.micromeso.2006.02.007

Google Scholar

[62] B. Li, J. He, D.G. Evans, Experimental investigation of sheet flexibility of layered double hydroxides: One-pot morphosynthesis of inorganic intercalates, Chem. Eng. J. 144 (2008) 124-137.

DOI: 10.1016/j.cej.2008.06.031

Google Scholar

[63] T.E. Johnson, W. Martens, R.L. Frost, Z. Ding, J.T. Kloprogge, Structured water in hydrotalcites of formula MgxZn6-xAl2(OH)16(CO3)·4H2O: a Raman microscopic study, J. Raman Spectrosc. 33 (2002) 604-609.

DOI: 10.1002/jrs.886

Google Scholar

[64] M. Di Serio, R. Tesser, L. Pengmei, E. Santacesaria, Heterogeneous catalysts for biodiesel production, Energy Fuels, 22 (2008) 207-217.

DOI: 10.1021/ef700250g

Google Scholar

[65] E. Lotero, J.G. Goodwin Jr., D.A. Bruce, K. Suwannakarn, Y. Liu, D.E. López, The Catalysis of Biodiesel Synthesis in:J.J. Spivey, K.M. Dooley (Eds.), Specialist Periodical Reports – Catalysis, Vol. 19, The Royal Society of Chemistry, Cambridge, UK, 2006, pp.41-84.

Google Scholar

[66] E. Lotero, Y. Liu, D.E. Lopez, K. Suwannakarn, D.A. Bruce, J.G. Goodwin, Jr., Synthesis of biodiesel via acid catalysis, Ind. Eng. Chem. Res. 44 (2005) 5353-5363.

DOI: 10.1021/ie049157g

Google Scholar

[67] K. Wilson, A.F. Lee, Rational design of heterogeneous catalysts for biodiesel synthesis, Catal. Sci. Technol. 2 (2012) 884-897.

DOI: 10.1039/c2cy20038d

Google Scholar

[68] M. Di Serio, M. Ledda, M. Cozzolino, G. Minutillo, R. Tesser, E. Santacesaria, Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts, Ind. Eng. Chem. Res. 45 (2006) 3009-3014.

DOI: 10.1021/ie051402o

Google Scholar

[69] C.S. Castro, D. Cardoso, P.A.P. Nascente, J.M. Assaf, MgAlLi mixed oxides derived from hydrotalcites for catalytic transesterification, Catal. Lett. 141 (2011) 1316-1323.

DOI: 10.1007/s10562-011-0650-y

Google Scholar

[70] A. Navajas, G. Arzamendi, F. Romero-Sarria, M.A. Centeno, J.A. Odriozola, L.M. Gandía, DRIFTS study of methanol adsorption on Mg-Al hydrotalcite catalysts for the transesterification of vegetable oils, Catal. Commun. 17 (2012) 189-193.

DOI: 10.1016/j.catcom.2011.11.005

Google Scholar

[71] D.-W. Lee, Y.-M. Park, K.-Y. Lee, Heterogeneous base catalysts for transesterification in biodiesel synthesis, Catal.Surv. Asia 13 (2009) 63-77.

DOI: 10.1007/s10563-009-9068-6

Google Scholar

[72] M. Zabeti, W.M.A.W. Daud, M.K. Aroua, Activity of solid catalysts for biodiesel production: A review, Fuel Process. Technol. 90 (2009) 770-777.

DOI: 10.1016/j.fuproc.2009.03.010

Google Scholar

[73] S. Yan, C. DiMaggio, S. Mohan, M. Kim, S.O. Salley, K.Y. Simon Ng, Advancements in heterogeneous catalysis for biodiesel synthesis, Topics Catal. 53 (2010) 721-736.

DOI: 10.1007/s11244-010-9460-5

Google Scholar

[74] A.K. Endalew, Y. Kiros, R. Zanzi, Inorganic heterogeneous catalysts for biodiesel production from vegetable oils, Biomass Bioenergy 35 (2011) 3787-3809.

DOI: 10.1016/j.biombioe.2011.06.011

Google Scholar

[75] Y.C. Sharma, B. Singh, J. Korstad, Latest developments on application of heterogeneous basic catalysts for an efficient and eco friendly synthesis of biodiesel: A review, Fuel 90 (2011) 1309-1324.

DOI: 10.1016/j.fuel.2010.10.015

Google Scholar

[76] A.P. Singh Chouhan, A.K. Sarma, Modern heterogeneous catalysts for biodiesel production: A comprehensive review, Renew. Sustain. Energy Rev. 15 (2011) 4378-4399.

DOI: 10.1016/j.rser.2011.07.112

Google Scholar

[77] S. Semwal, A.K. Arora, R.P. Badoni, D.K. Tuli, Biodiesel production using heterogeneous catalysts, Bioresource Technol. 102 (2011) 2151-2161.

DOI: 10.1016/j.biortech.2010.10.080

Google Scholar

[78] M.E. Borges, L. Díaz, Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review, Renew. Sustain. Energy Rev. 16 (2012) 2839-2849.

DOI: 10.1016/j.rser.2012.01.071

Google Scholar

[79] A. Islam, Y.H. Taufiq-Yap, C.-M.Chu, E.-S. Chan, P. Ravindra, Studies on design of heterogeneous catalysts for biodiesel production, Process. Safety Environ. Protect. 91 (2013) 131-144.

DOI: 10.1016/j.psep.2012.01.002

Google Scholar

[80] W. Xie, H. Peng, L. Chen, Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil, J. Mol. Catal. A: Chem. 246 (2006) 24-32.

DOI: 10.1016/j.molcata.2005.10.008

Google Scholar

[81] H. Zeng, Z. Feng, X. Deng, Y. Li, Activation of Mg-Al hydrotalcite catalysts for transesterification of rape oil, Fuel 87 (2008) 3071-3076.

DOI: 10.1016/j.fuel.2008.04.001

Google Scholar

[82] H.-J. Kim, B.-S. Kang, M.-J. Kim, Y. M. Park, D.-K. Kim, J.-S. Lee, K.-Y. Lee, Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst, Catal. Today 93-95 (2004) 315-320.

DOI: 10.1016/j.cattod.2004.06.007

Google Scholar

[83] N. Barakos, S. Pasias, N. Papayannakos, Transesterification of triglycerides in high and low quality oil feeds over an HT2 hydrotalcite catalyst, Bioresource Technol. 99 (2008) 5037-5042.

DOI: 10.1016/j.biortech.2007.09.008

Google Scholar

[84] R. Sree, N. S. Babu, P. S. Sai Prasad, N. Lingaiah, Transesterification of edible and non-edible oils over basic solid Mg/Zr catalysts, Fuel Process. Technol. 90 (2009) 152-157.

DOI: 10.1016/j.fuproc.2008.08.008

Google Scholar

[85] A. Corma, S. B. A. Hamid, S. Iborra, A. Velty, Lewis and Brönsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides, J. Catal. 234 (2005) 340-347.

DOI: 10.1016/j.jcat.2005.06.023

Google Scholar

[86] M. A. Olutoye, B. H. Hameed, Production of biodiesel fuel by transesterification ofdifferent vegetable oils with methanol using Al2O3 modified MgZnO catalyst, Bioresource Technol.

DOI: 10.1016/j.biortech.2012.12.171

Google Scholar

[87] R. Rahul, J.K. Satyarthi, D. Srinivas, Lanthanum and zinc incorporated hydrotalcites as solid base catalysts for biodiesel and biolubricants production, Ind. Eng. Chem. Res. 50 (2011) 1017–1025.

Google Scholar

[88] A.P. Soares Dias, J. Bernardo, P.Felizardo, M.J. Neiva Correia, Biodiesel production over thermal activated cerium modified Mg-Al hydrotalcites, Energy 41 (2012) 344-353.

DOI: 10.1016/j.energy.2012.03.005

Google Scholar

[89] M.J. Climent, A. Corma, S. Iborra, A. Velty, Designing the adequate base solid catalyst with Lewis or Bronsted basic sites or with acid–base pairs, J. Mol. Catal. A: Chem. 182 (2002) 327-342.

DOI: 10.1016/s1381-1169(01)00501-5

Google Scholar

[90] M. R. Hernández, J. A. Reyes-Labarta, F. J. Valdés, New heterogeneous catalytic transesterification of vegetable and used frying oil, Ind. Eng. Chem. Res. 49 (2010) 9068-9076.

DOI: 10.1021/ie100978m

Google Scholar

[91] V.K. Díez, C.R. Apesteguía, J.I. Di Cosimo, Aldol condensation of citral with acetone on MgO and alkali-promoted MgO catalysts, J. Catal. 240 (2006) 235-244.

DOI: 10.1016/j.jcat.2006.04.003

Google Scholar

[92] W. Trakarnpruk, S. Porntangjitlikit, Palmoilbiodiesel synthesized with potassium loaded calcined hydrotalcite and effectofbiodieselblendonelastomerproperties, Renew. Energy 33 (2008) 1558-1563.

DOI: 10.1016/j.renene.2007.08.003

Google Scholar

[93] G.Teng, L.Gao, G. Xiao, H. Liu, J.Lv, Biodiesel preparation from Jatrophacurcas oil catalyzed by hydrotalcite loaded with K2CO3, Appl. Biochem. Biotechnol. 162 (2010) 1725-1736.

DOI: 10.1007/s12010-010-8953-9

Google Scholar

[94] L. Gao, G. Teng, G. Xiao, R. Wei, Biodiesel from palm oil via loading KF/Ca-Al hydrotalcite catalyst, Biomass Bioenergy 34 (2010) 1283-1288.

DOI: 10.1016/j.biombioe.2010.03.023

Google Scholar

[95] H. Zeng, K. Liao, X. Deng, H. Jiang, F. Zhang, Characterization of the lipase immobilized on Mg-Al hydrotalcite for biodiesel, Process. Biochem. 44 (2009) 791-798.

DOI: 10.1016/j.procbio.2009.04.005

Google Scholar

[96] F. Yagiz, D. Kazan, A. N. Akin, Biodiesel production from waste oils by using lipaseimmobilized on hydrotalcite and zeolites, Chem. Eng. J. 134(2007) 262-267.

DOI: 10.1016/j.cej.2007.03.041

Google Scholar