Pillared Clay as an Effective Catalyst for Low Temperature VOCs Decomposition

Article Preview

Abstract:

Volatile organic compounds (VOCs) are organic chemicals mostly emitted from different sources like industrial or domestic having high vapor pressure at room-temperature conditions. Some of these are also anthropogenic in nature and also these are the major contributor for the photochemical ozone. The different methods available for the abatement of VOCs are thermal oxidation, catalytic oxidation, photocatalytic oxidation, adsorption etc. Due to the stringent regulation of VOCs emission in different countries there is a need of efficient abatement technology to preserve the environment. In this context catalytic combustion of organic pollutants offers considerable advantages over the industrially operated thermal combustion process. Generally, oxidative destruction is possible at low temperature in presence of a catalyst. In addition catalytic process is more energy efficient and can operate with very dilute pollutants. A number of catalysts have been used for the complete oxidation of VOCs, among these Pillared clays type porous materials are also useful for the purpose. Pillared clays have high surface area, pore volume, thermal stability and can be tailor made for particular catalytic application compared with the parent clays. In the present review we will summarize the latest developments on the clay based materials including the effect of different controlling parameters for the synthesis of pillared clay based porous materials and its specific application for the low temperature VOCs decomposition. In particular the effect of transition metals like iron and manganese oxide pillared clay on the VOC decomposition is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-91

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Information on: http://en.wikipedia.org/wiki/Clay

Google Scholar

[2] S. Guggenheim, R. T. Martin, Definition of clay and clay mineral: Journal report of the AIPEA nomenclature and CMS nomenclature committees, Clays Clay Miner 43 (1995) 255–256

DOI: 10.1346/ccmn.1995.0430213

Google Scholar

[3] P. Yuan, F. Annabi-Bergaya, Q. Tao, M. Fan, Z. Liu, J. Zhu, H. He, T. Chen., A combined study by XRD, FTIR, TG and HRTEM on the structure of delaminated Fe-intercalated/pillared clay, Journal of Colloid and Interface Science 324 (2008) 142–149

DOI: 10.1016/j.jcis.2008.04.076

Google Scholar

[4] B.K.G. Theng in "The chemistry of clay-organic reactions" Adam Hilger, London, (1974)

Google Scholar

[5] D.E.W. Vaughan, Pillared clays - a historical perspective, Catal. Today 2 (1988) 187-198.

Google Scholar

[6] M. Kojima, R. Hartford, C.T. O'Connor, The effect of pillaring montmorillonite and beidellite on the conversion of trimethyl benzenes, J. Catal. 128 (1991) 487-498

DOI: 10.1016/0021-9517(91)90306-o

Google Scholar

[7] S.M. Bradley, R.A. Kydd, Ga13, Al13, GaAl12, and chromium-pillared montmorillonites: acidity and reactivity for cumene conversion, J. Catal. 141 (1993) 239-249

DOI: 10.1006/jcat.1993.1132

Google Scholar

[8] J.P. Chen, M.C. Hausladen, R.T. Yang, Delaminated Fe2O3-pillared clay: Its preparation, characterization, and activities for selective catalytic reduction of NO by NH3 J. Catal. 151 (1995) 135-146.

DOI: 10.1006/jcat.1995.1016

Google Scholar

[9] L. Borgnino, M.J. Avena, C.P. De Pauli, Synthesis and characterization of Fe (III)-montmorillonites for phosphate adsorption, Colloids and Surfaces A: 341 ( 2009) 46-52.

DOI: 10.1016/j.colsurfa.2009.03.037

Google Scholar

[10] E.G. Rightor, M.S. Tzou, T.J. Pinnavaia, Iron oxide pillared clay with large gallery height: Synthesis and properties as a Fischer-Tropsch catalyst, J. Catal. 130 (1991) 29-40.

DOI: 10.1016/0021-9517(91)90089-m

Google Scholar

[11] Laura Borgnino, Carla E. Giacomelli, Marcelo J. Avena, Carlos P. De Pauli, Phosphate adsorbed on Fe(III) modified montmorillonite: Surface complexation studied by ATR-FTIR Colloids and Surfaces: A 353( 2010) 238-244

DOI: 10.1016/j.colsurfa.2009.11.022

Google Scholar

[12] S.P. Christiano, J. Wang and T.J. Pinnavaia, Intercalation of niobium and tantalum M6Cl12n+ cluster cations in montmorillonite: a new route to pillared clays, Inorg. Chem. 24 (1985) 1222-1227.

DOI: 10.1021/ic00202a022

Google Scholar

[13] L.S. Belaroui, J.M.M. Millet, A. Bengueddach, Characterization of lalithe, a new bentonite-type Algerian clay, for intercalation and catalysts preparation. Catalysis Today 89 (2004) 279–286.

DOI: 10.1016/j.cattod.2003.12.020

Google Scholar

[14] S. Mnasri, N. Frini-Srasra. Evolution of Brönsted and Lewis acidity of single and mixed pillared bentonite, Infrared Phys. Technol. 58 (2013) 15–20.

DOI: 10.1016/j.infrared.2012.12.041

Google Scholar

[15] M. Trombetta, G. Busca, M. Lenarda, L. Storaro, R. Ganzerla, L. Piovesan, A.J. Lopez, A. R Manuel, E. Rodriguez-Castellon, Solid acid catalysts from clays: evaluation of surface acidity of mono- and bi-pillared smectites by FT-IR spectroscopy measurements, NH3-TPD and catalytic tests, Appl. Catal. A: Gen. 193 (2000) 55–69.

DOI: 10.1016/s0926-860x(99)00413-5

Google Scholar

[16] J. M Thomas, W. J Thomas, Principles and practice of heterogeneous catalysis. VCH Publishers Inc., New York, 1997.

Google Scholar

[17] Z. Ding, JT Kloprogge, RL Frost, GQ Lu, HY Zhu, Porous clays and pillared clay-based catalysts. Part 2: A review of the catalytic and molecular sieve applications. Journal of Porous Materials 8 (2001) 273-293.

DOI: 10.1002/chin.200219248

Google Scholar

[18] A. Gil A, L M Gandía, Recent advances in the synthesis and catalytic applications of pillared clays. Catal. Rev - Sci. Eng. 42 (2000) 145-212

DOI: 10.1081/cr-100100261

Google Scholar

[19] T. Mishra, P. Mohapatra and K. M. Parida Synthesis, characterisation and catalytic evaluation of Iron-manganese mixed oxide pillared clay towards VOC oxidation reaction., Applied Catalysis B: Environmental 79 (2008) 279-285.

DOI: 10.1016/j.apcatb.2007.10.030

Google Scholar

[20] C. Belver, M.A. Vicente, M. Fernandez-Garcia, and A. Martinez-Arias, Supported catalysts for DeNO(x) reaction based on iron clays. Journal of Molecular Catalysis A- Chemical, 219 (2004) 309-313.

DOI: 10.1016/j.molcata.2004.05.025

Google Scholar

[21] D. H. Doff, N. H. J. Gangas, J. E. M. Allan, J. M. D. Coey, Preparation and characterization of iron oxide pillared montmorillonite. Clay Minerals, 23 (1998) 367-377.

DOI: 10.1180/claymin.1988.023.4.04

Google Scholar

[22] C.I. Warburton, Preparation and catalytic properties of iron oxide and iron sulphide pillared clays, Catal. Today 2 (1988) 271–280.

DOI: 10.1016/0920-5861(88)85009-0

Google Scholar

[23] P. Bankovic´, A. Milutinovic´-Nikolic´, Z. Mojovic´, A. Rosic´, Zˇ. Cˇupic´, D. Loncˇarevic´, D. Jovanovic´, Toluene Degradation in Water Using AlFe-Pillared Clay CatalystsChinese J. Catal. 30 (2009) 14–18.

Google Scholar

[24] P. Bankovic´, A. Milutinovic´-Nikolic´, N. Jovic´-Jovicˇic, J. Dostanic´, Zˇ. Cˇupic´, D. Loncˇarevic´, D. Jovanovic´, Synthesis, Charaterisation and Application of Fe, Al Pillared clay, Acta Phys. Pol., A 115 (2009) 811–814.

Google Scholar

[25] P. Bankovic´, A. Milutinovic´-Nikolic´, Z. Mojovic´, N. Jovic´-Jovicˇic´, M. Zˇunic´, V. Dondur, D. Jovanovic´, Al,Fe-pillared clays in catalytic decolorization of aqueous tartrazine solutions Appl. Clay Sci. 58 (2012) 73–78.

DOI: 10.1016/j.clay.2012.01.015

Google Scholar

[26] J. Zhang, S. Zhang, W. Cai, Q. Zhong, The characterization of CrCe-doped on TiO2-pillared clay nanocomposites for NO oxidation and the promotion effect of CeOx Applied Surface Science 268 (2013) 535– 540

DOI: 10.1016/j.apsusc.2012.12.169

Google Scholar

[27] E. Noordally, J.R. Richmond, S.F. Tahir, Destruction of volatile organic compounds by catalytic oxidation, Catal. Today 17 (1993) 359-366.

DOI: 10.1016/0920-5861(93)80039-4

Google Scholar

[28] D. P. Serrano, G. Calleja, J. A. Botas, F. J. Gutierrez, Adsorption and hydrophobic properties of mesostructured MCM-41 and SBA-15 materials for volatile organic compound removal. Ind. Eng. Chem. Res. 43(2004) 7010–7018.

DOI: 10.1021/ie040108d

Google Scholar

[29] V. K. Gupta, N. Verma, Removal of volatile organic compounds by cryogenic condensation followed by adsorption. Chem. Eng. Sci. 57 (2002) 2679–2696.

DOI: 10.1016/s0009-2509(02)00158-6

Google Scholar

[30] H. Zaitan, D. Bianchi, O. Achak, T. Chafik, A comparative study of the adsorption and desorption of o-xylene onto bentonite clay and alumina. J. Hazard. Mater. 153 (2008) 852–859.

DOI: 10.1016/j.jhazmat.2007.09.070

Google Scholar

[31] E.C. Moretti, Reduce VOC and HAP emissions, Chem. Eng. Prog. 98 (6) (2002) 30-40.

Google Scholar

[32] P. Papaefthimiou, T. Ioannides, X.E. Verykios, Combustion of non-halogenated volatile organic compounds over group VIII metal catalysts, Appl. Catal. B: Environ. 13 (1997) 175-184.

DOI: 10.1016/s0926-3373(96)00103-8

Google Scholar

[33] C. Lahousse, A. Bernier, P. Grange, B. Delmon, P. Papaefthimiou, T. Ioannides, X. Verykios, Evaluation of γ-MnO2 as a VOC Removal Catalyst: Comparison with a noble metal Catalyst, J. Catal. 178 (1998) 214-225

DOI: 10.1006/jcat.1998.2148

Google Scholar

[34] J.J. Spivey, Complete catalytic oxidation of volatile organics. Ind. Eng. Chem. Res., 26 (1987) 2165-.

DOI: 10.1021/ie00071a001

Google Scholar

[35] T. Maillet, C. Solleau, J. Barbier, D. Duprez. Oxidation of carbon monoxide, propene, propane and methane over a Pd/Al2O3 catalyst. Effect of the chemical state of Pd. Appl. Catal., B, 14 (1997) 85-95.

DOI: 10.1016/s0926-3373(97)00014-3

Google Scholar

[36] J. Carpentier, J F Lamonier, S. Siffert, E. A. Zhilinskaya, A. Aboukaïs. Characterisation of Mg/Al hydrotalcite with interlayer palladium complex for catalytic oxidation of toluene. Appl. Catal., A, 234 (2002) 91-101.

DOI: 10.1016/s0926-860x(02)00201-6

Google Scholar

[37] M. Labaki, S. Siffert, J F Lamonier, E A Zhilinskaya, A. Aboukaïs, Total oxidation of propene and toluene in the presence of zirconia doped by copper and yttrium: Role of anionic vacancies. Appl. Catal., B 43 ( 2003) 261-271.

DOI: 10.1016/s0926-3373(02)00312-0

Google Scholar

[38] W B Li, W B Chu, M. Zhuang, J. Hua, Catalytic oxidation of toluene on Mn-containing mixed oxides prepared in reverse microemulsions. Catal. Today, 93-95 (2004) 205-209.

DOI: 10.1016/j.cattod.2004.06.042

Google Scholar

[39] S. C. Kim, The catalytic oxidation of aromatic hydrocarbons over supported metal oxide. J. Hazard. Mater., 91 (2002) 285-299.

DOI: 10.1016/s0304-3894(01)00396-x

Google Scholar

[40] Y. Liu, M. Luo, Z. Wei, Qin Xin, P. Ying, Can Li, Catalytic oxidation of chlorobenzene on supported manganese oxide catalysts. Appl. Catal., B 29 (2001) 61-67.

DOI: 10.1016/s0926-3373(00)00193-4

Google Scholar

[41] M.E.M. Zwinkels, S. G. Järås, P G Menon, T A Griffin, Catalytic materials for high-temperature combustion. Catal. Rev. Sci. Eng., 35 (1993) 319-358.

DOI: 10.1080/01614949308013910

Google Scholar

[42] T. J. Pinnavaia, Intercalated Clay Catalysts, Science, 220 (1983) 365-371.

DOI: 10.1126/science.220.4595.365

Google Scholar

[43] Qu. Fang, Zhu Lizhong Yang Kun, Adsorption behaviors of volatile organic compounds (VOCs) on porous clay heterostructures (PCH) J. Hazard Mater. 170 (2009) 7–12

DOI: 10.1016/j.jhazmat.2009.05.027

Google Scholar

[44] L.Z. Zhu, S.L. Tian, Y. Shi, Adsorption of volatile organic compounds onto porous clay heterostructures based on spent organobentonites, Clays Clay Miner. 53 (2005) 123–136.

DOI: 10.1346/ccmn.2005.0530202

Google Scholar

[45] C. Lahousse, A. Bernier, A. Gaigneaux, P. Ruiz, P. Grange, B. Delmon, in: R.K. Grasselli (Ed.), Proceedings of the Third World Congress on Oxidation Catalysis, Elsevier, Amsterdam, 1997, Page No-777.

DOI: 10.1016/s0167-2991(97)81040-3

Google Scholar

[46] E. Rezaei, Jafar Soltan, Ning Chen, Catalytic oxidation of toluene by ozone over alumina supported manganese oxides: Effect of catalyst loading, Appl. Catal B: 136–137 (2013) 239-247.

DOI: 10.1016/j.apcatb.2013.01.061

Google Scholar

[47] M. Baldi, E. Finocchio, F. Milella, G. Busca, Catalytic combustion of C3 hydrocarbons and oxygenates over Mn3O4 Appl. Catal. B 16 (1998) 43-51.

DOI: 10.1016/s0926-3373(97)00061-1

Google Scholar

[48] P.E. Marti, M. Maciejewski, A. Baiker, Methane combustion over La0.8Sr0.2MnO3+x supported on MAl2O4 (M = Mg, Ni and Co) spinels, Appl. Catal. B 4 (1994) 225-235.

DOI: 10.1016/0926-3373(94)00020-4

Google Scholar

[49] U.S. Ozkan, R.F. Kueller, E. Moctezuma, Methanol oxidation over nonprecious transition metal oxide catalysts, Ind. Eng. Chem. Res. 29 (1990) 1136-1142.

DOI: 10.1021/ie00103a008

Google Scholar

[50] J.M. Gallardo-Amores, T. Armaroli, G. Ramis, E. Finocchio, G. Busca, A study of anatase–supported Mn oxide as catalysts for 2-propanol oxidation, Appl. Catal. B 22 (1999) 249-259.

DOI: 10.1016/s0926-3373(99)00055-7

Google Scholar

[51] M. Baldi F. Milella, J.M. Gallardo-Amores, , G. Busca, A study of Mn-Ti oxide powders and their behaviour in propane oxidation catalysis, J. Mater. Chem. 8 (1998) 2525-2531.

DOI: 10.1039/a803994a

Google Scholar

[52] J. Halasz, M. Hodos, I. Hannus, G. Tasi, I. Kiricsi, Catalytic detoxification of C2-chlorohydrocarbons over iron-containing oxide and zeolite catalysts, Colloid Surface A 265 (2005) 171-177.

DOI: 10.1016/j.colsurfa.2005.03.030

Google Scholar

[53] K.M. Parida, A. Samal, Catalytic combustion of volatile organic compounds on Indian Ocean manganese nodules Appl. Catal. A 182 (1999) 249-256.

DOI: 10.1016/s0926-860x(99)00015-0

Google Scholar

[54] L.M. Gondia, M.A. Vicent, A. Gil, Complete oxidation of acetone over manganese oxide catalysts supported on alumina- and zirconia-pillared clays, Appl. Catal. B 38 (2002) 295-307.

DOI: 10.1016/s0926-3373(02)00058-9

Google Scholar

[55] A. Gil, M.A. Vicente, S.A. Korili, Effect of the nature and structure of pillared clays in the catalytic behaviour of supported manganese oxide, Catal. Today 112 (2006) 117-120.

DOI: 10.1016/j.cattod.2005.11.046

Google Scholar

[56] P. Papaefthimiou, T. Ioannides, X.E. Verykios, VOC removal: investigation of ethylacetate oxidation over supported Pt catalysts, Catal. Today 54 (1999) 81-92

DOI: 10.1016/s0920-5861(99)00170-4

Google Scholar

[57] Min Chen, Liping Fan, Lingyan Qi, Xiaoyan Luo, Renxian Zhou, Xiaoming Zheng The catalytic combustion of VOCs over copper catalysts supported on cerium-modified and zirconium-pillared montmorillonite Catalysis Communications 10 (2009) 838–841

DOI: 10.1016/j.catcom.2008.12.016

Google Scholar

[58] K.M. Parida, G. Bishwa Bidita Varadwaj, Swagatika Sahu, and P.C. Sahoo, Schiff base Pt (II) complex intercalated montmorillonite: A robust catalyst for hydrogenation of aromatic nitro compounds at room temperature, , Ind. Eng. Chem. Res. 50 (2011) 7849-7856.

DOI: 10.1021/ie200128w

Google Scholar

[59] G. B. B. Varadwaj, S. Sahu, K.M. Parida, La complex @ Fe-PILM offering resilient option for efficient and green processing towards epoxidation of cyclohexene. Ind. Eng. Chem. Res. 50 (2011) 8973-8982.

DOI: 10.1021/ie2002445

Google Scholar

[60] G. Bishwa Bidita Varadwaj and K.M. Parida, Facile synthesis of dodecatungstophosphoric acid @ TiO2 pillared montmorillonite and its effectual exploitation towards solvent free esterification of acetic acid with n-butanol, , Catal. Lett. 10 (2011) 1476-1483.

DOI: 10.1007/s10562-011-0684-1

Google Scholar

[61] T. Mishra and K.M. Parida, Effect of sulphate on the surface and catalytic properties of iron-chromium mixed oxide pillared clays., J. Coll. Inter. Sci. 301 (2006) 554-559.

DOI: 10.1016/j.jcis.2006.05.013

Google Scholar

[62] D. Das, H.K. Mishra, K.M. Parida and A.K. Dalai, Preparation, characterisation of Zr, Ti and Zr-Ti mixed oxide pillared montmorillonite and its catalytic activity towards nitration of chlorobenzene, Ind. J. Chem. 41A (2002) 2238-2243.

Google Scholar

[63] K. M. Parida, T. Mishra, D. Das and S. N. Chintalpudi, Thermal transformation of trinuclear Fe(III) acetato complex intercalated montmorillonite. Appl. clay Sci. 15 (1999) 463-475.

DOI: 10.1016/s0169-1317(99)00035-6

Google Scholar

[64] T. Mishra and K. M. Parida, Transition metal pillared clay-5: Synthesis, characterisation and catalytic activity of Iron-chromium mixed oxide pillared montmorillonite., Appl Catal A: General 174 (1998) 91-98.

DOI: 10.1016/s0926-860x(98)00154-9

Google Scholar

[65] T. Mishra and K.M. Parida, Transition metal pillared clay: part 4. A compartive study of textural, acidic and catalytic properties of chromia pillared montmorillonite and acid activated montmorillonite., Appl Catal A: General, 166 (1998) 123-133.

DOI: 10.1016/s0926-860x(97)00247-0

Google Scholar

[66] T. Mishra and K.M. Parida Transition metal pillared clay: 3. A para selective catalyst for nitration of chlorobenzene., J. Mol Catal, 121 (1997) 91.

Google Scholar

[67] T. Mishra, K. M. Parida, Transition metal oxide pillared clay. Part-II: A comparative study of Textural and Acidic properties of Mn(III) pillared Acid Activated Montmorillonite. J. Mater Chem, 7(1997) 147-151.

DOI: 10.1016/s0926-860x(97)00247-0

Google Scholar

[68] T. Mishra, K. M. Parida and S. B. Rao, Transition metal oxide pillared clay 1. A comparative study of textural and acidic properties of Fe (III) pillared montomorillonite and pillared acid activated montmorillonite., J. Coll.& Interface Sci. 183 (1996) 176-183.

DOI: 10.1016/s0926-860x(97)00247-0

Google Scholar

[69] Ph.D Thesis of Dr. T.Mishra., Utkal University 1996.

Google Scholar

[70] Sesegma Ts. Khankhasaeva, Sayana V. Badmaeva, Elvira Ts. Dashinamzhilova, Preparation, characterization and catalytic application of Fe- and Fe/Al-pillared clays in the catalytic wet peroxide oxidation of 4-chlorophenol in Zeolites and Related Materials: Trends, Targets and Challenges Proceedings of 4th International FEZA Conference A. Gédéon, P. Massiani and F. Babonneau (Editors)

DOI: 10.1016/s0167-2991(08)80130-9

Google Scholar

[71] Zuo Shufeng, Liu Fujian, Zhou Renxian, Qi Chenze, Adsorption/desorption and catalytic oxidation of VOCs on montmorillonite and pillared clays, Catalysis Communications 22 (2012) 1–5

DOI: 10.1016/j.catcom.2012.02.002

Google Scholar

[72] B.P. Embaida, G. Jose, F. Biomorgia, M. Gonzalez-Jimeneza, Josefina Perez-Zurita, Carlos E. Scotta, Using Fe-PILC as catalyst, Applied Catalysis A: General 400 (2011) 166–170.

DOI: 10.1016/j.apcata.2011.04.033

Google Scholar

[73] S Sugunan, K Nisha, R Rckha, K S Rahna, H Suja & C S Deepa, Acidity and catalytic activity of rare earth modified Al/Zr pillared clays, Indian Journal of Chemistry 39A (2000) 765-768

Google Scholar

[74] J. Barraulta, C. Bouchoulea, K. Echachoui, N. Frini-Srasrab, M. Trabelsi, F. Bergayab Catalytic wet peroxide oxidation (CWPO) of phenol over mixed (Al-Cu)-pillared clays Applied Catalysis B: Environmental 15 (1998) 269-274

DOI: 10.1016/s0926-3373(97)00054-4

Google Scholar

[75] S. Zuo, R. Zhou, Al-pillared clays supported rare earths and palladium catalysts for deep oxidation of low concentration of benzene, Applied Surface Science 253 (2006) 2508–2514

DOI: 10.1016/j.apsusc.2006.05.119

Google Scholar

[76] S. Brunauer, L.S. Deming, W.S. Deming, W.J. Teller, On a Theory of the vander waals. Adsorption of Gases, J. Am. Chem. Soc. 62 (1940) 1723-1732.

DOI: 10.1021/ja01864a025

Google Scholar

[77] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 359 (1992) 710-712.

DOI: 10.1038/359710a0

Google Scholar

[78] S. Inagaki, Y. Fukushima, K. Kuroda, Synthesis of highly ordered mesoporous materials from a layered polysilicate,  J. Chem. Soc., Chem. Commun., 8 (1993) 680-682

DOI: 10.1039/c39930000680

Google Scholar

[79] H.Y. Zhu, Z. Ding, J.C. Barry, Porous solids from layered clays by combined pillaring and templating approaches, J. Phys. Chem. B 106 (2002) 11420-11429.

DOI: 10.1021/jp014463i

Google Scholar

[80] J. Y. Bottero, A. Manceau, F. Villieras, D. Tchoubar, Structure and mechanisms of formation of iron oxide hydroxide (chloride) polymers, Langmuir 10 (1994) 316-319.

DOI: 10.1021/la00013a046

Google Scholar

[81] M. Sergio, M. Musso, J. Medina and W. Diano, A Zojomo, Aluminum-pillaring of a montmorillonitic clay: Textural properties as a function of the starting mineral particle size, (ISSN 1833-122X) Volume 2 March 2006 (Reference http://www.azom.com/oars.asp)

Google Scholar

[82] K. S. W. Sing, D. H. Everett, R. A. W.  Haul, L. Moscou, R. R. Pierotti, J. Rouquerol and T. Siemieniewska, "Reporting data for gas/solid systems with special reference to the determination of surface area and porosity. (Recommendations 1984), Pure and Appl. Chem., 57 (1985) 603-619.

DOI: 10.1515/iupac.57.0007

Google Scholar

[83] P. Bankovic´, A. Milutinovic´-Nikolic´, Z. Mojovic´, N. Jovic´-Jovicˇic´, M. Perovic´, V. Spasojevic´, D. Jovanovic. Synthesis and characterization of bentonites rich in beidellite with incorporated Al or Al–Fe oxide pillars, Microporous and Mesoporous Materials 165 (2013) 247–256

DOI: 10.1016/j.micromeso.2012.08.029

Google Scholar

[84] Suna Balci, Elif Gökçay, Effects of drying methods and calcinations temperatures on the physical properties of iron intercalated clays, Mater Chem Phys 76 (2002) 46–51

DOI: 10.1016/s0254-0584(01)00503-x

Google Scholar

[85] Z. Qin, P. Yuan, J. Zhu, H. He, D. Liu, S. Yang, Influences of thermal pretreatment temperature and solvent on the organosilane modification of Al13-intercalated/Al-pillared montmorillonite, Appl. Clay Sci. 50 (2010) 546–553.

DOI: 10.1016/j.clay.2010.10.011

Google Scholar

[86] R.P. Marinkovic´-Neducin, E.E. Kiss, T.Z. Cukic´ D.Z. Obadovic´ , Thermal Behaviour of Al-, AlFe- and AlCu Pillared Intercalated Clays, J. Therm. Anal. Calorim. 78 (2004) 307–321.

DOI: 10.1023/b:jtan.0000042177.82033.d0

Google Scholar

[87] L.V. Govea, H. Steinfink, Thermal Stability and Magnetic Properties of Fe−Polyoxocation Intercalated Montmorillonite, Chem. Mater. 9 (1997) 849-856.

DOI: 10.1021/cm960538x

Google Scholar

[88] K. Bukka, J. D. Miller and J. Shabtai, FTIR Study of Deuterated Montmorillonites: Structural Features Relevant to Pillared Clay Stability, Clays Clay Miner. 40 (1) (1992) 92-102.

DOI: 10.1346/ccmn.1992.0400110

Google Scholar

[89] G. Chen, W.T. Chou, C.T. Yeh, The sorption of hydrogen on palladium in a flow system, Appl. Catal. 8 (1983) 389-397.

Google Scholar

[90] T. Matsuda, M. Asanuma, E. Kikuchi, Effect of high-temperature treatment on the activity of montmorillonite pillared by alumina in the conversion of 1,2,4-trimethylbenzene, Appl. Catal. 38 (1988) 289-299.

DOI: 10.1016/s0166-9834(00)82832-8

Google Scholar

[91] R. López-Fonseca, A. Aranzabal, J.I. Gutiérrez-Ortiz, J.I. Álvarez-Uriarte, J.R. González-Velasco, Comparative study of the oxidative decomposition of trichloroethylene over H-type zeolites under dry and humid conditions, Appl. Catal., B 30 (2001) 303-313.

DOI: 10.1016/s0926-3373(00)00244-7

Google Scholar

[92] M. Motaka, P. da Costab, Ł. Kuterasinski, Modified layered clays as catalysts for ethanol oxidation, Catalysis Today 176 (2011) 154– 158

DOI: 10.1016/j.cattod.2011.01.020

Google Scholar

[93] Ikram Jarraya, Sophie Fourmentin, Mourad Benzina, Samir Bouaziz, VOC adsorption on raw and modified clay materials, Chemical Geology 275 (2010) 1–8

DOI: 10.1016/j.chemgeo.2010.04.004

Google Scholar

[94] J.Q Jiang, C. Cooper, S. Ouki, Comparison of modified montmorillonite adsorbents-part I: preparation, characterization and phenol adsorption. Chemosphere 47 (2002) 711–716.

DOI: 10.1016/s0045-6535(02)00011-5

Google Scholar

[95] A.G. Panov, J.J. Fripiat, Acetone Condensation Reaction on Acid Catalysts J. Catal. 178 (1998) 188-197.

DOI: 10.1006/jcat.1998.2142

Google Scholar

[96] M. Paulis, L.M. Gandia, A. Gil, J. Sambeth, J.A. Odriozola, M. Montes, nfluence of the surface adsorption–desorption processes on the ignition curves of volatile organic compounds (VOCs) complete oxidation over supported catalysts, Appl. Catal. B 26 (2000) 37-46.

DOI: 10.1016/s0926-3373(00)00109-0

Google Scholar

[97] L.M. Gandia, A. Gil, S.A. Korili, Effects of various alkali–acid additives on the activity of a manganese oxide in the catalytic combustion of ketones Appl. Catal. B 33 (2001) 1-8.

DOI: 10.1016/s0926-3373(01)00155-2

Google Scholar

[98] P.H. Scudder, Electron Flow in Organic Chemistry, John Wiley and Sons, New York, 1992, Page-63.

Google Scholar

[99] M. Kulazynski, J. G-van Ommen, J. Trawozynski, J. Wabendziewski, Catalytic combustion of trichloroethylene over TiO2-SiO2 supported catalysts, Appl. Catal. B 36 (2002) 239-247.

DOI: 10.1016/s0926-3373(01)00313-7

Google Scholar