Additives for Solid Polymer Electrolytes: The Layered Nanoparticles

Article Preview

Abstract:

The massive exploitation of modern technology results in increasing demand of energy of the entire world, which has urged extensive research and development in the areas of energy production from non-conventional resources, their storage and distribution. Electrolyte is one of the components in various electrochemical devices, like solar cells, fuel cells, rechargeable battery etc. Besides the conventional liquid electrolytes, polymer based electrolytes gain particular attention because of their solid nature, flexibility and ease of availability. For the last few decades, use of inorganic nanoparticles as additives is one of the most promising ways to improve the electrochemical performance of polymer electrolytes. The resulting nanocomposite polymer electrolytes can display enhanced conductivity, mechanical stability and improved interfacial stability towards electrode materials. This review highlights the recent research efforts given to the nanocomposites systems containing various layered transition metal hydroxides for making solid polymer electrolytes. Also various approaches adopted to understand the ion conduction mechanism of solid polymer electrolytes has also been discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-56

Citation:

Online since:

July 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Di Noto, E. Negro, S. Lavina, M. Vittadello, Hybrid inorganic–organic polymer electrolytes, Woodhead Publishing Limited, Oxford, 2010.

DOI: 10.1533/9781845699772.1.219

Google Scholar

[2] P.V. Wright, Polymer electrolytes—The early days, Electrochimi. Acta 43 (1998) 1137-1143.

Google Scholar

[3] J.R. MacCallum, C.A. Vincent, Polymer electrolyte reviews-1, Elsevier Applied Science, London, 1987.

Google Scholar

[4] J.R. MacCallum, C.A. Vincent, Polymer electrolyte reviews-2, Elsevier Science, London, 1989.

Google Scholar

[5] C.A. Vincent, Polymer electrolytes, Prog. Solid. State Chem. 17 (1987) 145-261.

Google Scholar

[6] B. Scrosati, C.A. Vincent, Polymer electrolytes: The key to lithium polymer batteries, MRS Bull. 25 (2000) 28-30.

DOI: 10.1557/mrs2000.15

Google Scholar

[7] A.M. Stephan, Review on gel polymer electrolytes for lithium batteries, Eur. Polym. J. 42 (2006) 21-42.

Google Scholar

[8] M. Grätzel, Recent advances in sensitized mesoscopic solar cells, Acc. Chem. Res. 42 (2009) 1788-1798.

DOI: 10.1021/ar900141y

Google Scholar

[9] J.Y. Song, Y.Y. Wang, C.C. Wan, Review of gel-type polymer electrolytes for lithium-ion batteries, J. Power Sources 77 (1999) 183-197.

DOI: 10.1016/s0378-7753(98)00193-1

Google Scholar

[10] C. Berthier, W. Gorecki, M. Minier, M.B. Armand, J.M. Chabagno, P. Rigaud, Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts, Solid State Ionics 11 (1983) 91-95.

DOI: 10.1016/0167-2738(83)90068-1

Google Scholar

[11] N. Gondaliya, D.K. Kanchan, P. Sharma, M. Pant, M.S. Jayswal, Dielectric and conductivity in silver-poly (ethylene oxide) solid polymer electrolytes dispersed with SiO2 nanoparticles, AIP Conf. Proc. 1313 (2010) 112-114.

DOI: 10.1063/1.3530460

Google Scholar

[12] E. Staunton, Y.G. Andreev, P.G. Bruce, Factors influencing the conductivity of crystalline polymer electrolytes, Faraday Discuss. 134 ( 2007) 143–156.

DOI: 10.1039/b601945e

Google Scholar

[13] R. Borkowska, J. Laskowski, J. Plocharski, J. Przyluski, W. Wiec-zorek, Performance of acrylate-poly(ethylene oxide) polymer electrolytes in lithium batteries, J. Appl. Electrochem. 23 (1993) 991-995.

DOI: 10.1007/bf00266120

Google Scholar

[14] W. Wieczorek, Z. Florjanczyk, J.R. Stevens, Composite polyether based solid electrolytes, Electrochim. Acta 40 (1995) 2251-2258.

DOI: 10.1016/0013-4686(95)00172-b

Google Scholar

[15] E. Quartarone, P. Mustarelli, A. Magistris, PEO-based composite polymer electrolytes, Solid State Ionics 110 (1998) 1-14.

DOI: 10.1016/s0167-2738(98)00114-3

Google Scholar

[16] W. Wieczorek, J.R. Stevens, Impedance spectroscopy and phase structure of polyether−poly(methyl methacrylate)−LiCF3SO3 blend-based electrolytes, J. Phys. Chem. B 101 (1997) 1529-1534.

DOI: 10.1021/jp962517w

Google Scholar

[17] J.F. LeNest, S. Callens, A. Gandini, M. Armand, A new polymer network for ionic conduction, Electrochim. Acta 37 (1992) 1585-1588.

DOI: 10.1016/0013-4686(92)80116-4

Google Scholar

[18] D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali metal ions with poly(ethylene oxide), Polymer 14 (1973) 589.

DOI: 10.1016/0032-3861(73)90146-8

Google Scholar

[19] M.B. Armand, J.M. Chabagno, M.J. Duclot, Fast ion transport in solids: Solid state batteries and devices, North Holland, New York, 1979.

Google Scholar

[20] J. Nei de Freitas, A.F. Nogueira, M.A. De Paoli, New insights into dye-sensitized solar cells with polymer electrolytes, J. Mater. Chem. 19 (2009) 5279-5294.

DOI: 10.1039/b900928k

Google Scholar

[21] I.E. Kelly, J.R. Owen, B.C.H. Steele, Poly(ethylene oxide) electrolytes for operation at near room temperature, J. Power Sources 14 (1985) 13-21.

DOI: 10.1016/0378-7753(85)88004-6

Google Scholar

[22] B. Sandner, T. Steurich, K. Wiesner, H. Bischoff, Solid polymer electrolytes based on oligo(ethylene glycol)methacrylates, Polym. Bull. 28 (1992) 355-360.

DOI: 10.1007/bf00294835

Google Scholar

[23] M.A.S.A. Samir, F. Alloin, W. Gorecki, J.Y. Sanchez, A. Dufresne, Nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose nanocrystals, J. Phys. Chem. B 108 (2004) 10845-10852.

DOI: 10.1021/jp0494483

Google Scholar

[24] S. Jung, D.W. Kim, S.D. Lee, M. Cheong, D.Q. Nguyen, B.W. Cho, H.S. Kim, Fillers for solid-state polymer electrolytes: Highlight, Bull. Korean Chem. Soc. 30 (2009) 2355-2361.

DOI: 10.5012/bkcs.2009.30.10.2355

Google Scholar

[25] A. Kotal, S. Si, T.K. Paira, T.K. Mandal, Synthesis of semitelechelic POSS-polymethacrylate hybrids by thiol-mediated controlled radical polymerization with unusual thermal behaviors, J. Polym. Sci.: Part A: Polym. Chem. 46 (2008) 1111-1123.

DOI: 10.1002/pola.22453

Google Scholar

[26] F. Croce, G.B. Appetecchi, L. Persl, B. Scrosati, Nanocomposite polymer electrolytes for lithium batteries, Nature 394 (1998) 456-458.

DOI: 10.1038/28818

Google Scholar

[27] D.W. Hatchett, M. Josowicz, Composites of Intrinsically Conducting Polymers as Sensing Nanomaterials, Chem. Rev. 108 (2008) 746-769.

DOI: 10.1021/cr068112h

Google Scholar

[28] S. Si, A. Kotal, T.K. Mandal, S. Giri, H. Nakamura, T. Kohara, Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes, Chem. Mater. 16 (2004) 3489-3496.

DOI: 10.1021/cm049205n

Google Scholar

[29] M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater. Sci. Eng. R 28 (2000) 1-63.

DOI: 10.1016/s0927-796x(00)00012-7

Google Scholar

[30] A.K. Mishra, S. Bose, T. Kuila, N.H. Kim, J.H. Lee, Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells, Prog. Polym. Sci. 37 (2012) 842-869.

DOI: 10.1016/j.progpolymsci.2011.11.002

Google Scholar

[31] P. Aranda, M. Darder, R. Fernandez-Saavedra, M. Lopez-Blanco, E. Ruiz-Hitzky, Relevance of polymer- and biopolymer-clay nanocomposites in electrochemical and electroanalytical applications, Thin Solid Films 495 (2005) 104-112.

DOI: 10.1016/j.tsf.2005.08.284

Google Scholar

[32] L. F., Organo-modified anionic clays into polymer compared to smectite-type nanofiller: Potential applications of the nanocomposites, J. Nanosci. Nanotechnol. 6 (2006) 303-315.

DOI: 10.1166/jnn.2006.904

Google Scholar

[33] E. Ruiz-Hitzky, P. Aranda, Polymer-salt intercalation complexes in layer silicates, Adv. Mater. 2 (1990) 545-547.

DOI: 10.1002/adma.19900021108

Google Scholar

[34] E. Hackett, E. Manias, E.P. Giannelis, Computer Simulation Studies of PEO/Layer Silicate Nanocomposites, Chem. Mater. 12 (2000) 2161-2167.

DOI: 10.1021/cm990676x

Google Scholar

[35] R.A. Vaia, S. Vasudevan, W. Krawiec, L.G. Scanlon, E.P. Giannelis, New polymer electrolyte nanocomposites: Melt intercalation of poly(ethylene oxide) in mica-type silicates, Adv. Mater. 7 (1995) 154-156.

DOI: 10.1002/adma.19950070210

Google Scholar

[36] H.W. Chen, C.Y. Chiu, H.D. Wu, I.W. Shen, F.C. Chang, Solid-state electrolyte nanocomposites based on poly(ethylene oxide), poly(oxypropylene) diamine, mineral clay and lithium perchlorate, Polymer 43 (2002) 5011-5016.

DOI: 10.1016/s0032-3861(02)00326-9

Google Scholar

[37] H.W. Chen, C.Y. Chiu, F.C. Chang, Conductivity enhancement mechanism of the poly(ethylene oxide)/modified-clay/LiClO4 systems, J. Polym. Sci. Part B Polym. Phys. 40 (2002) 1342-1353.

DOI: 10.1002/polb.10194

Google Scholar

[38] L. Fan, C.W. Nan, Z. Dang, Effect of modified montmorillonites on the ionic conductivity of (PEO)16LiClO4 electrolytes, Electrochim. Acta 47 (2002) 3541-3544.

DOI: 10.1016/s0013-4686(02)00325-0

Google Scholar

[39] L. Fan, C.W. Nan, M. Li, Thermal, electrical and mechanical properties of (PEO)16LiClO4 electrolytes with modified montmorillonites, Chem. Phys. Lett. 369 (2003) 698-702.

DOI: 10.1016/s0009-2614(03)00043-5

Google Scholar

[40] A.I. Khan, D. O'Hare, Intercalation chemistry of layered double hydroxides: Recent developments and applications, J. Mater. Chem. 12 (2002) 3191-3198.

DOI: 10.1039/b204076j

Google Scholar

[41] V. Rives, Layered double hydroxides: Present and future, Nova Science Publishers, New York, 2001.

Google Scholar

[42] G.G.C. Arizaga, K.G. Satyanarayana, F. Wypych, Layered hydroxide salts: Synthesis, properties and potential applications, Solid State Ionics 178 (2007) 1143-1162.

DOI: 10.1016/j.ssi.2007.04.016

Google Scholar

[43] F. Wypych, K.G. Satyanarayana, Clay surfaces: Fundamentals and applications, Elsevier Academic Press, Amsterdam, 2004.

Google Scholar

[44] S. Si, A. Taubert, A. Mantion, G. Rogeza, P. Rabu, Peptide-intercalated layered metal hydroxides: effect of peptide chain length and side chain functionality on structural, optical and magnetic properties, Chem. Sci. 3 (2012) 1945-1957.

DOI: 10.1039/c2sc01087a

Google Scholar

[45] L.A. Utracki, M. Sepehr, E. Boccaleri, Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs), Polym. Adv. Technol. 18 (2007) 1-37.

DOI: 10.1002/pat.852

Google Scholar

[46] M. Abdullah, W. Lenggoro, K. Okuyama, Polymer electrolyte nanocomposites, in Encyclopedia of Nanoscience and Nanotechnology, H.S. Nalwa, Editor 2004, American Scientific Publisher. pp.731-762.

Google Scholar

[47] J.O. Besenhard, M. Winter, Advances in battery technology: Rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries, ChemPhysChem 3 (2002) 155-159.

DOI: 10.1002/1439-7641(20020215)3:2<155::aid-cphc155>3.0.co;2-s

Google Scholar

[48] F. Croce, R. Curini, A. Martinelli, L. Persi, F. Ronci, B. Scrosati, R.J. Caminiti, Physical and chemical properties of nanocomposite polymer electrolytes, J. Phys. Chem. B 103 (1999) 10632-10638.

DOI: 10.1021/jp992307u

Google Scholar

[49] C. Capiglia, P. Mustarelli, E. Quartarone, C. Tomasi, A. Magistris, Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes, Solid State Ionics 118 (1999) 73-79.

DOI: 10.1016/s0167-2738(98)00457-3

Google Scholar

[50] H.M. Xiong, X. Zhao, J.S. Chen, New polymer−inorganic nanocomposites:  PEO−ZnO and PEO−ZnO−LiClO4 films, J. Phys. Chem. B 105 (2001) 10169-10174.

DOI: 10.1021/jp0103169

Google Scholar

[51] B. Kumar, L. Scanlon, R. Marsh, R. Mason, R. Higgins, R. Baldwin, Structural evolution and conductivity of PEO:LiBF4–MgO composite electrolytes, Electrochim. Acta 46 (2001) 1515-1521.

DOI: 10.1016/s0013-4686(00)00747-7

Google Scholar

[52] F. Croce, L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta, M.A. Hendrickson, Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes, Electrochim. Acta 46 (2001) 2457-2461.

DOI: 10.1016/s0013-4686(01)00458-3

Google Scholar

[53] C.S. Liao, W.B. Ye, Enhanced ionic conductivity in poly(ethylene oxide)/layered double hydroxide nanocomposite electrolytes, J. Polym. Res. 10 (2003) 241-246.

DOI: 10.1023/b:jpol.0000004619.00197.7a

Google Scholar

[54] C.S. Liao, W.B. Ye, Effect of surface states of layered double hydroxides on conductive and transport properties of nanocomposite polymer electrolytes, Mater Chem. Phys. 88 (2004) 84-89.

DOI: 10.1016/j.matchemphys.2004.06.012

Google Scholar

[55] C.S. Liao, W.B. Ye, Structure and conductive properties of poly(ethylene oxide)/layered double hydroxide nanocomposite polymer electrolytes, Electrochimica Acta 49 (2004) 4993-4998.

DOI: 10.1016/j.electacta.2004.06.018

Google Scholar

[56] M.S. Cho, B. Shin, J.D. Nam, Y. Lee, K. Song, Nanocomposites of polymer gel electrolyte based on poly(ethylene glycol diacrylate) and Mg–Al layered double hydroxides, Polym. Int. 53 (2004) 1523-1528.

DOI: 10.1002/pi.1592

Google Scholar

[57] M.S. Cho, B. Shin, S.D. Choi, Y. Lee, K.G. Song, Gel polymer electrolyte nanocomposites PEGDA with Mg–Al layered double hydroxides, Electrochimica Acta 50 (2004) 331-334.

DOI: 10.1016/j.electacta.2004.03.050

Google Scholar

[58] L. Wang, X. Li, W. Yang, Enhancement of electrochemical properties of hot-pressed poly(ethylene oxide)-based nanocomposite polymer electrolyte films for all-solid-state lithium polymer batteries, Electrochimica Acta 55 (2010) 1895-1899.

DOI: 10.1016/j.electacta.2009.11.003

Google Scholar

[59] M.M. Borgohain, T. Joykumar, S.V. Bhat, Studies on a nanocomposite solid polymer electrolyte with hydrotalcite as a filler, Solid State Ionics 181 (2010) 964-970.

DOI: 10.1016/j.ssi.2010.05.040

Google Scholar

[60] T.J. Singh, S.V. Bhat, Morphology and conductivity studies of a new solid polymer electrolyte:(PEG)xLiClO4, Bull. Mater. Sci. 26 (2003) 707-714.

DOI: 10.1007/bf02706768

Google Scholar

[61] H.G. Jeon, H.T. Jung, S.W. Lee, S.D. Hudson, Morphology of polymer/silicate nanocomposites High density polyethylene and a nitrile copolymer, PolymBull 41 (1998) 107-113.

Google Scholar

[62] G.S. MacGlasham, Y.G. Andrew, P.G. Bruce, Structure of the polymer electrolyte poly(ethylene oxide)6:LiAsF6, Nature 398 (1999) 792-794.

DOI: 10.1038/19730

Google Scholar

[63] C.D. Robitaille, D. Fauteux, Phase diagrams and conductivity characterization of some  PEO - LiX electrolytes, J. Electrochem. Soc. 133 (1986) 315 -325.

DOI: 10.1149/1.2108569

Google Scholar

[64] S. O'leary, D. O'Hare, G. Seeley, Delamination of layered double hydroxides in polar monomers: new LDH-acrylate nanocomposites, Chem. Commun. (2002) 1506-1507.

DOI: 10.1039/b204213d

Google Scholar

[65] R. Pearce, G.J. Vancso, Real-time imaging of melting and crystallization in poly(ethylene oxide) by atomic force microscopy, Polymer 39 (1998) 1237-1242.

DOI: 10.1016/s0032-3861(97)00420-5

Google Scholar

[66] G.P. Pandey, S.A. Hashmi, R.C. Agrawal, Hot-press synthesized polyethylene oxide based proton conducting nanocomposite polymer electrolyte dispersed with SiO2 nanoparticles, Solid State Ionics 179 (2008).

DOI: 10.1016/j.ssi.2008.04.006

Google Scholar

[67] F.M. Gray, Solid polymer electrolytes: Fundamentals and technological applications, VCH, New York, 1991.

Google Scholar

[68] B. Kumar, L.G. Scanlon, Polymer–ceramic composite electrolytes: Conductivity and thermal history effects, Solid State Ionics 124 (1999) 239-254.

DOI: 10.1016/s0167-2738(99)00148-4

Google Scholar

[69] C.C. Tambelli, A.C. Bloise, A.V. Rosario, E.C. Pereira, C.J. Magon, J.P. Donoso, Characterisation of PEO–Al2O3 composite polymer electrolytes, Electrochim. Acta 47 (2002) 1677-1682.

DOI: 10.1016/s0013-4686(01)00900-8

Google Scholar

[70] W. Wieczorek, M. Siekieski, A description of the temperature dependence of the conductivity for composite polymeric electrolytes by effective medium theory, J. Appl. Phys. 76 (1994) 2220-2226.

DOI: 10.1063/1.357638

Google Scholar

[71] F. Capnano, F. Croce, B. Scrosati, Composite polymer electrolytes, J. Electrochem. Soc. 138 (1991) 1918-1922.

DOI: 10.1149/1.2085900

Google Scholar

[72] H.Y. Sun, Y. Takeda, N. Imanishi, Ferroelectric materials as a ceramic filler in solid composite polyethylene oxide-based electrolytes, J. Electrochem. Soc. 147 (2000) 2462-2467.

DOI: 10.1149/1.1393554

Google Scholar

[73] L.L. Hench, J.K. West, Principles of electronic of ceramics, J Wiley, NY, USA, 1990.

Google Scholar

[74] M. Muszynska, H. Wycislik, M. Siekierski, Composite polymeric electrolytes based on poly(ethylene oxide) matrix and metallic aluminum filler, Solid State Ionics 147 (2002) 281-287.

DOI: 10.1016/s0167-2738(02)00027-9

Google Scholar

[75] C.J. Leo, G.V.S. Rao, B.V.R. Chowdari, Studies on plasticized PEO–lithium triflate–ceramic filler composite electrolyte system, Solid State Ionics 148 (2002) 159-171.

DOI: 10.1016/s0167-2738(02)00107-8

Google Scholar

[76] F. Kool, J.C. Chisen, M. Vucelic, W. Jones, Synthesis and properties of terephthalate and benzoateintercalates of Mg−Al layered double hydroxides possessing varying layer charge, Chem. Mater. 8 (1996) 1969-1977.

DOI: 10.1021/cm960070y

Google Scholar

[77] F. Leroux, M. Adachi-Pagano, M. Intissar, S. Chauviere, C. Forano, J.P. Besse, Delamination and restacking of layered double hydroxides, J. Mater. Chem. 11 (2001) 105-112.

DOI: 10.1039/b002955f

Google Scholar

[78] S.A. Solin, D. Hines, S.K. Yun, T.J. Pinnavala, M.F. Thorpe, Layer rigidity in 2D disordered Ni-Al layer double hydroxides, J. Non-Cryst. Solids 182 (1995) 212-220.

DOI: 10.1016/0022-3093(94)00541-9

Google Scholar

[79] Y. You, G.F. Vance, H. Zhao, Selenium adsorption on Mg-Al and Zn-Al layered double hydroxides, Appl. Clay Sci. 20 (2001) 13-25.

DOI: 10.1016/s0169-1317(00)00043-0

Google Scholar

[80] P. Mustarelli, C. Capiglia, E. Quartarone, C. Tomasi, P. Ferloni, L. Linati, Cation dynamics and relaxation in nanoscale polymer electrolytes: a 7Li NMR study, Phys. Rev. B 60 (1999) 7228-7233.

DOI: 10.1103/physrevb.60.7228

Google Scholar

[81] P.A.R.D. Jayathilaka, M.A.K.L. Dissanayake, I. Albinsson, B.E. Mellander, Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system, Electrochim. Acta 47 (2002) 3257-3268.

DOI: 10.1016/s0013-4686(02)00243-8

Google Scholar

[82] S.H. Chung, Y. Wang, S.G. Greenbaum, M. Marcinek, L. Persi, F. Croce, W. Wieczorek, B. Scrosati, Nuclear magnetic resonance studies of nanocomposite polymer electrolytes, J. Phys.: Condens. Matter 13 (2001) 11763.

DOI: 10.1088/0953-8984/13/50/336

Google Scholar

[83] Y.W. Kim, W. Lee, B.K. Choi, Relation between glass transition and melting of PEO salt complexes, Electrochim. Acta 45 (2000) 1473-1477.

DOI: 10.1016/s0013-4686(99)00362-x

Google Scholar

[84] A.S. Best, J. Adebahr, P. Jacobsson, D.R. MacFarlane, M. Forsyth, Microscopic interactions in nanocomposite electrolytes, Macromolecules 34 (2001) 4549-4555.

DOI: 10.1021/ma001837h

Google Scholar

[85] A. Bunde, W. Dieterich, Percolation in composites, J. Electroceramics 5 (2000) 81-92.

Google Scholar

[86] S. Indris, P. Heitjans, H.E. Roman, A. Bunde, Nanocrystalline versus microcrystalline Li2O:B2O3 composites: Anomalous ionic conductivities and percolation theory, Phys. Rev. Lett. 84 (2000) 2889-2892.

DOI: 10.1103/physrevlett.84.2889

Google Scholar

[87] N. Binesh, S.V. Bhat, Effects of a plasticiser on protonic conductivity of polymer electrolyte (PEG)100NH4ClO4, Solid State Ionics 122 (1999) 291-299.

DOI: 10.1016/s0167-2738(99)00079-x

Google Scholar

[88] S. Carlino, The intercalation of carboxylic acids into layered double hydroxides: a critical evaluation and review of the different methods, Solid State Ionics 98 (1997) 73-84.

DOI: 10.1016/s0167-2738(96)00619-4

Google Scholar

[89] P.G. Bruce, C.A. Vincent, Steady state current flow in solid binary electrolyte cells, J. Electroanal. Chem. 225 (1987) 1-17.

Google Scholar

[90] J. Evans, C.A. Vincent, P.G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes, Polymer 28 (1987) 2324-2328.

DOI: 10.1016/0032-3861(87)90394-6

Google Scholar

[91] O.C. Wilson Jr., T. Olorunyolemi, A. Jaworski, L. Borun, D. Young, A. Siriwat, E. Dickens, C. Oriakji, M. Lerner, Surface and interfacial properties of polymer-intercalated layered double hydroxide nanocomposites, Appl. Clay Sci. 15 (1999) 265-279.

DOI: 10.1016/s0169-1317(99)00023-x

Google Scholar

[92] J. Przyluski, M. Siekierski, W. Wieczorek, Composite polyether based solid electrolytes, Electrochim. Acta 40 (1995) 2251-2258.

DOI: 10.1016/0013-4686(95)00172-b

Google Scholar