Drug Delivery Using Nanosized Layered Double Hydroxide, an Anionic Clay

Article Preview

Abstract:

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-167

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.W. McCabe, Inorganic materials (eds) D.W. Bruce, D. O'Hare, John Wiley and Sons, New York, 1992, p.295.

Google Scholar

[2] V.A. Drits, T.N. Sokolova, G.V. Sokolova, V.I. Cherkashin, New Members of The Hydrotalcite-Manasseite Group, Clays and Clay Minerals 35 (1987) 401-417.

DOI: 10.1346/ccmn.1987.0350601

Google Scholar

[3] J.L. Crovisier, J.H. Thomassin, T. Juteau, J.P. Eberhart, J.C. Touray, P. Bailif, Geochim. Cosmochimica Acta 47 (1983) 377.

DOI: 10.1016/0016-7037(83)90260-0

Google Scholar

[4] F. Cavani, F. Trifro, A. Vaccari, Hydrotalcite-Type Anionic Clays: Preparation, Properties and Applications, Catalysis Today 11 (1991) 173–301.

DOI: 10.1016/0920-5861(91)80068-k

Google Scholar

[5] H.C.B. Hansen, C.B. Koch, Synthesis and Characterization of Pyroaurite, Applied Clay Science 10 (1995) 5-19.

Google Scholar

[6] C. Viseras, P. Cerezo, R. Sanchez, I. Salcedo, C. Aguzzi, Current challenges in clay minerals for drug delivery, Applied Clay Science 48 (2010) 291-295.

DOI: 10.1016/j.clay.2010.01.007

Google Scholar

[7] J.-H. Choy, S.-J. Choi, J.-M. Oh, T. Park, Clay minerals and layered double hydroxides for novel biological applications, Applied Clay Science 36 (2007) 122-132.

DOI: 10.1016/j.clay.2006.07.007

Google Scholar

[8] A. Lopez-Galindo, C. Viseras, P. Cerezo, Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products, Applied Clay Science 36 (2007) 51-63.

DOI: 10.1016/j.clay.2006.06.016

Google Scholar

[9] N. Bejoy, Hydrptalcite: the clay that cures, Resonance (2001) 57-61.

Google Scholar

[10] W.T. Reichle, Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite), Solid State Ionics 22 (1986) 135-141.

DOI: 10.1016/0167-2738(86)90067-6

Google Scholar

[11] R. Allmann, The crystal structure of pyroaurite, Acta Crystallographica B 24 (1968) 972-977.

Google Scholar

[12] Y.J. Lin, D.Q. Li, D.G. Evans, X. Duan, Modulating effect of Mg-Al-CO3 layered double hydroxides on the thermal stability of PVC resin, Polymer Degradation and Stability 88 (2005) 286-293.

DOI: 10.1016/j.polymdegradstab.2004.11.007

Google Scholar

[13] S.P. Newman, W. Jones, Synthesis, characterization and applications of layered double hydroxides containing organic guests, New Journal of Chemistry 22 (1998) 105-115.

DOI: 10.1039/a708319j

Google Scholar

[14] H. Chen, J.M. Wang, T. Pan, Y.L. Zhao, J.Q. Zhang, C.N. Cao, Physicochemical properties and electrochemical performance of Al-substituted alpha-Ni-(OH)(2) with additives for Ni-metal hydride batteries, Journal of the Electrochemical Society 150 (2003) A1399-A1404.

DOI: 10.1149/1.1610466

Google Scholar

[15] A.M. El-Toni, S. Yin, T. Sato, Direct coating for layered double hydroxide/4,4 '-diaminostilbene-2,2 '-disulfonic acid nanocomposite with silica by seeded polymerization technique, Journal of Solid State Chemistry 177 (2004) 3197-3201.

DOI: 10.1016/j.jssc.2004.04.052

Google Scholar

[16] S. Miyata, M. Kuroda, Method for inhibiting the thermal or ultraviolet degradation of thermoplastic resin and thermoplastic resin composition having stability to thermal or ultraviolet degradation, 1981, US Patent 4 299 759.

Google Scholar

[17] F. Li, X. Duan, Applications of Layered Double Hydroxides. Vol. 119, Springer, Berlin, 2006.

Google Scholar

[18] H. Nakayama, K. Takeshita, M. Tsuhako, Preparation of 1-hydroxyethylidene-1, 1-diphosphonic acid-intercalated layered double hydroxide and its physicochemical properties, Journal of Pharmaceutical Sciences 92 (2003) 2419-2426.

DOI: 10.1002/jps.10498

Google Scholar

[19] V. Ambrogi, G. Fardella, G. Grandolini, L. Perioli, Intercalation compounds of hydrotalcite-like anionic clays with antiinflammatory agents - I. Intercalation and in vitro release of ibuprofen, International Journal of Pharmaceutics 220 (2001) 23-32.

DOI: 10.1016/s0378-5173(01)00629-9

Google Scholar

[20] B.X. Li, J. He, D.G. Evans, X. Duan, Enteric-coated layered double hydroxides as a controlled release drug delivery system, International Journal of Pharmaceutics 287 (2004) 89-95.

DOI: 10.1016/j.ijpharm.2004.08.016

Google Scholar

[21] J.H. Choy, J.S. Jung, J.M. Oh, M. Park, J. Jeong, Y.K. Kang, O.J. Han, Layered double hydroxide as an efficient drug reservoir for folate derivatives, Biomaterials 25 (2004) 3059-3064.

DOI: 10.1016/j.biomaterials.2003.09.083

Google Scholar

[22] Z.L. Wang, E.B. Wang, L. Gao, L. Xu, Synthesis and properties of Mg2Al layered double hydroxides containing 5-fluorouracil, Journal of Solid State Chemistry 178 (2005) 736-741.

DOI: 10.1016/j.jssc.2004.11.005

Google Scholar

[23] L.L. Qin, S.L. Wang, R. Zhang, R.R. Zhu, X.Y. Sun, S.D. Yao, Two different approaches to synthesizing Mg-Al-layered double hydroxides as folic acid carriers, Journal of Physics And Chemistry of Solids 69 (2008) 2779-2784.

DOI: 10.1016/j.jpcs.2008.06.144

Google Scholar

[24] C.X. Liu, W.G. Hou, L.F. Li, Y. Li, S.J. Liu, Synthesis and characterization of 5-fluorocytosine intercalated Zn-Al layered double hydroxide, Journal of Solid State Chemistry 181 (2008) 1792-1797.

DOI: 10.1016/j.jssc.2008.03.032

Google Scholar

[25] U. Costantino, V. Ambrogi, M. Nocchetti, L. Perioli, Hydrotalcite-like compounds: Versatile layered hosts of molecular anions with biological activity, Microporous and Mesoporous Materials 107 (2008) 149-160.

DOI: 10.1016/j.micromeso.2007.02.005

Google Scholar

[26] L. Jin, Q. Liu, Z.Y. Sun, X.Y. Ni, M. Wei, Preparation of 5-Fluorouracil/beta-Cyclodextrin Complex Intercalated in Layered Double Hydroxide and the Controlled Drug Release Properties, Industrial & Engineering Chemistry Research 49 (2010) 11176-11181.

DOI: 10.1021/ie100990z

Google Scholar

[27] D.K. Pan, H. Zhang, T. Zhang, X. Duan, A novel organic-inorganic microhybrids containing anticancer agent doxifluridine and layered double hydroxides: Structure and controlled release properties, Chemical Engineering Science 65 (2010) 3762-3771.

DOI: 10.1016/j.ces.2010.03.013

Google Scholar

[28] M. Silion, D. Hritcu, I.M. Jaba, B. Tamba, D. Ionescu, O.C. Mungiu, I.M. Popa, In vitro and in vivo behavior of ketoprofen intercalated into layered double hydroxides, Journal of Materials Science-Materials in Medicine 21 (2010) 3009-3018.

DOI: 10.1007/s10856-010-4151-0

Google Scholar

[29] L. Perioli, T. Posati, M. Nocchetti, F. Bellezza, U. Costantino, A. Cipiciani, Intercalation and release of antiinflammatory drug diclofenac into nanosized ZnAl hydrotalcite-like compound, Applied Clay Science 53 (2011) 374-378.

DOI: 10.1016/j.clay.2010.06.028

Google Scholar

[30] F. Wypych, K.G. Satyanarayana, Functionalization of single layers and nanofibers: a new strategy to produce polymer nanocomposites with optimized properties, Journal of Colloid and Interface Science 285 (2005) 532-543.

DOI: 10.1016/j.jcis.2004.12.028

Google Scholar

[31] R.T. Cygan, J.A. Greathouse, H. Heinz, A.G. Kalinichev, Molecular models and simulations of layered materials, Journal of Materials Chemistry 19 (2009) 2470-2481.

DOI: 10.1039/b819076c

Google Scholar

[32] S.J. Palmer, R.L. Frost, T. Nguyen, Hydrotalcites and their role in coordination of anions in Bayer liquors: Anion binding in layered double hydroxides, Coordination Chemistry Reviews 253 (2009) 250-267.

DOI: 10.1016/j.ccr.2008.01.012

Google Scholar

[33] J.H. Choy, S.Y. Kwak, J.S. Park, Y.J. Jeong, J. Portier, Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide, Journal of the American Chemical Society 121 (1999) 1399-1400.

DOI: 10.1021/ja981823f

Google Scholar

[34] Z.P. Xu, Q.H. Zeng, G.Q. Lu, A.B. Yu, Inorganic nanoparticles as carriers for efficient cellular delivery, Chemical Engineering Science 61 (2006) 1027-1040.

DOI: 10.1016/j.ces.2005.06.019

Google Scholar

[35] http://www.public.asu

Google Scholar

[36] http://www.ntu.edu.sg

Google Scholar

[37] S.P. Newman, W. Jones, P. O'Connor, D.N. Stamires, Synthesis of the 3R(2) polytype of a hydrotalcite-like mineral, Journal of Materials Chemistry 12 (2002) 153-155.

DOI: 10.1039/b110715c

Google Scholar

[38] J.J. Bravo-Suarez, E.A. Paez-Mozo, S.T. Oyama, Review of the synthesis of layered double hydroxides: A thermodynamic approach, Quimica Nova 27 (2004) 601-614.

DOI: 10.1590/s0100-40422004000400015

Google Scholar

[39] W.W. Kagunya, Properties of water adsorbed in anionic clays: A neutron scattering study, Journal of Physical Chemistry 100 (1996) 327-330.

DOI: 10.1021/jp951858r

Google Scholar

[40] U. Wanderlingh, R. Giordano, W.W. Kagunya, Dynamics of hydration water in lysozyme, Physica B 234 (1997) 210-212.

DOI: 10.1016/s0921-4526(96)00914-3

Google Scholar

[41] T. Kanoh, T. Shichi, K. Takagi, Mono- and bilayer equilibria of stearate self-assembly formed in hydrotalcite interlayers by changing the intercalation temperature, Chemistry Letters (1999) 117-118.

DOI: 10.1246/cl.1999.117

Google Scholar

[42] A.I. Khan, L.X. Lei, A.J. Norquist, D. O'Hare, Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide, Chemical Communications (2001) 2342-2343.

Google Scholar

[43] O. Saber, H. Tagaya, Preparation and intercalation reactions of Zn-Sn LDH and Zn-Al-Sn LDH, Journal of Porous Materials 10 (2003) 83-91.

DOI: 10.1016/j.matchemphys.2007.10.024

Google Scholar

[44] H.W. Olfs, L.O. Torres-Dorante, R. Eckelt, H. Kosslick, Comparison of different synthesis routes for Mg-Al layered double hydroxides (LDH): Characterization of the structural phases and anion exchange properties, Applied Clay Science 43 (2009) 459-464.

DOI: 10.1016/j.clay.2008.10.009

Google Scholar

[45] X. Xiang, H.I. Hima, H. Wang, F. Li, Facile synthesis and catalytic properties of nickel-based mixed-metal oxides with mesopore networks from a novel hybrid composite precursor, Chemistry of Materials 20 (2008) 1173-1182.

DOI: 10.1021/cm702072t

Google Scholar

[46] J. Chakraborty, S. Roychowdhury, S. Sengupta, S. Ghosh, Mg-Al layered double hydroxide-methotrexate nanohybrid drug delivery system: Evaluation of efficacy, Materials Science & Engineering C-Materials for Biological Applications 33 (2013) 2168-2174.

DOI: 10.1016/j.msec.2013.01.047

Google Scholar

[47] M. Chakraborty, PhD thesis entitled, "Ceramic nanovehicles for controlled delivery of functional biomolecules" submitted to Faculty of Engineering, Jadavpur University, Kolkata, India, 2013.

Google Scholar

[48] J. Chakraborty, S. Sengupta, S. Dasgupta, M. Chakraborty, S. Ghosh, S. Mallik, K.L. Das, D. Basu, Determination of trace level carbonate ion in Mg-Al layered double hydroxide: Its significance on the anion exchange behaviour, Journal of Industrial and Engineering Chemistry 18 (2012) 2211-2216.

DOI: 10.1016/j.jiec.2012.06.020

Google Scholar

[49] K.K. Jain, Nanotechnology-based drug delivery for cancer, Technology in Cancer Research & Treatment 4 (2005) 407-416.

Google Scholar

[50] C. Buzea, Pacheco, II, K. Robbie, Nanomaterials and nanoparticles: Sources and toxicity, Biointerphases 2 (2007) MR17-MR71.

DOI: 10.1116/1.2815690

Google Scholar

[51] W.H. De Jong, P.J.A. Borm, Drug delivery and nanoparticles: Applications and hazards, International Journal of Nanomedicine 3 (2008) 133-149.

Google Scholar

[52] R. Bawa, Nanoparticle-based Therapeutics in Humans: A survey, Nanotechnology Law & Business 5 (2008) 135-155.

Google Scholar

[53] K.J. Cho, X. Wang, S.M. Nie, Z. Chen, D.M. Shin, Therapeutic nanoparticles for drug delivery in cancer, Clinical Cancer Research 14 (2008) 1310-1316.

DOI: 10.1158/1078-0432.ccr-07-1441

Google Scholar

[54] A.H. Faraji, P. Wipf, Nanoparticles in cellular drug delivery, Bioorganic & Medicinal Chemistry 17 (2009) 2950-2962.

DOI: 10.1016/j.bmc.2009.02.043

Google Scholar

[55] Z.P. Xu, G.Q. Lu, Layered double hydroxide nanomaterials as potential cellular drug delivery agents, Pure and Applied Chemistry 78 (2006) 1771-1779.

DOI: 10.1351/pac200678091771

Google Scholar

[56] K.M. Tyner, S.R. Schiffman, E.P. Giannelis, Nanobiohybrids as delivery vehicles for camptothecin, Journal of Controlled Release 95 (2004) 501-514.

DOI: 10.1016/j.jconrel.2003.12.027

Google Scholar

[57] J.M. Oh, S.J. Choi, G.E. Lee, J.E. Kim, J.H. Choy, Inorganic Metal Hydroxide Nanoparticles for Targeted Cellular Uptake Through Clathrin-Mediated Endocytosis, Chemistry-An Asian Journal 4 (2009) 67-73.

DOI: 10.1002/asia.200800290

Google Scholar

[58] S.J. Choi, J.M. Oh, J.H. Choy, Safety Aspect of Inorganic Layered Nanoparticles: Size-Dependency In Vitro and In Vivo, Journal of Nanoscience and Nanotechnology 8 (2008) 5297-5301.

DOI: 10.1166/jnn.2008.1143

Google Scholar

[59] S.J. Choi, J.H. Choy, Layered double hydroxide nanoparticles as target-specific delivery carriers: uptake mechanism and toxicity, Nanomedicine 6 (2011) 803-814.

DOI: 10.2217/nnm.11.86

Google Scholar

[60] S.Y. Kwak, W.M. Kriven, M.A. Wallig, J.H. Choy, Inorganic delivery vector for intravenous injection, Biomaterials 25 (2004) 5995-6001.

DOI: 10.1016/j.biomaterials.2004.01.056

Google Scholar

[61] C.R. Gordijo, C.A.S. Barbosa, A. Ferreira, V.R.L. Constantino, D.D. Silva, Immobilization of ibuprofen and copper-ibuprofen drugs on layered double hydroxides, Journal of Pharmaceutical Sciences 94 (2005) 1135-1148.

DOI: 10.1002/jps.20336

Google Scholar

[62] L. Mohanambe, S. Vasudevan, Anionic clays containing anti-inflammatory drug molecules: Comparison of molecular dynamics simulation and measurements, Journal of Physical Chemistry B 109 (2005) 15651-15658.

DOI: 10.1021/jp050480m

Google Scholar

[63] B.X. Li, J. He, D.G. Evans, X. Duan, Inorganic layered double hydroxides as a drug delivery system-intercalation and in vitro release of fenbufen, Applied Clay Science 27 (2004) 199-207.

DOI: 10.1016/j.clay.2004.07.002

Google Scholar

[64] V. Ambrogi, G. Fardella, G. Grandolini, L. Perioli, M.C. Tiralti, Intercalation compounds of hydrotalcite-like anionic clays with anti-inflammatory agents, II: Uptake of diclofenac for a controlled release formulation AAPS PharmSciTech 3 (2002) E26.

DOI: 10.1208/pt030326

Google Scholar

[65] M.S.S. Roman, M.J. Holgado, B. Salinas, V. Rives, Characterisation of Diclofenac, Ketoprofen or Chloramphenicol Succinate encapsulated in layered double hydroxides with the hydrotalcite-type structure, Applied Clay Science 55 (2012) 158-163.

DOI: 10.1016/j.clay.2011.11.010

Google Scholar

[66] F.P. Bonina, M.L. Giannossi, L. Medici, C. Puglia, V. Summa, F. Tateo, Diclofenac-hydrotalcite: In vitro and in vivo release experiments, Applied Clay Science 41 (2008) 165-171.

DOI: 10.1016/j.clay.2007.10.008

Google Scholar

[67] L. Perioli, M. Nocchetti, V. Ambrogi, L. Latterini, C. Rossi, U. Costantino, Sunscreen immobilization on ZnAl-hydrotalcite for new cosmetic formulations, Microporous and Mesoporous Materials 107 (2008) 180-189.

DOI: 10.1016/j.micromeso.2007.02.021

Google Scholar

[68] K. Zou, H. Zhang, X. Duan, Studies on the formation of 5-aminosalicylate intercalated Zn-Al layered double hydroxides as a function of Zn/Al molar ratios and synthesis routes, Chemical Engineering Science 62 (2007) 2022-2031.

DOI: 10.1016/j.ces.2006.12.041

Google Scholar

[69] M. Del Arco, E. Cebadera, S. Gutierrez, C. Martin, M.J. Montero, V. Rives, J. Rocha, M.A. Sevilla, Mg,Al layered double hydroxides with intercalated indomethacin: Synthesis, characterization, and pharmacological study, Journal of Pharmaceutical Sciences 93 (2004) 1649-1658.

DOI: 10.1002/jps.20054

Google Scholar

[70] F.S. Li, L. Jin, J.B. Han, M. Wei, C.J. Li, Synthesis and Controlled Release Properties of Prednisone Intercalated Mg-Al Layered Double Hydroxide Composite, Industrial & Engineering Chemistry Research 48 (2009) 5590-5597.

DOI: 10.1021/ie900043r

Google Scholar

[71] Y. Li, H. Li, M. Wei, J. Lu, L. Jin, pH-Responsive composite based on prednisone-block copolymer micelle intercalated inorganic layered matrix: Structure and in vitro drug release, Chemical Engineering Journal 151 (2009) 359-366.

DOI: 10.1016/j.cej.2009.03.049

Google Scholar

[72] H. Zhang, K. Zou, S.H. Guo, X. Duan, Nanostructural drug-inorganic clay composites: Structure, thermal property and in vitro release of captopril-intercalated Mg-Al-layered double hydroxides, Journal of Solid State Chemistry 179 (2006) 1792-1801.

DOI: 10.1016/j.jssc.2006.03.019

Google Scholar

[73] S.J. Xia, Z.M. Ni, Q. Xu, B.X. Hu, J. Hu, Layered double hydroxides as supports for intercalation and sustained release of anti hypertensive drugs, Journal of Solid State Chemistry 181 (2008) 2610-2619.

DOI: 10.1016/j.jssc.2008.06.009

Google Scholar

[74] J.M. Oh, M. Park, S.T. Kim, J.Y. Jung, Y.G. Kang, J.H. Choy, Efficient delivery of anticancer drug MTX through MTX-LDH nanohybrid system, Journal of Physics And Chemistry of Solids 67 (2006) 1024-1027.

DOI: 10.1016/j.jpcs.2006.01.033

Google Scholar

[75] M. Chakraborty, S. Dasgupta, C. Soundrapandian, J. Chakraborty, S. Ghosh, M.K. Mitra, D. Basu, Methotrexate intercalated ZnAl-layered double hydroxide, Journal of Solid State Chemistry 184 (2011) 2439-2445.

DOI: 10.1016/j.jssc.2011.07.015

Google Scholar

[76] S.J. Choi, J.M. Oh, J.H. Choy, Anticancer drug-layered hydroxide nanohybrids as potent cancer chemotherapy agents, Journal of Physics and Chemistry of Solids 69 (2008) 1528-1532.

DOI: 10.1016/j.jpcs.2007.10.140

Google Scholar