[1]
T.T.X. Hang, T.A. Truc, T.H. Nam, V.K. Oanh, J.-B. Jorcin, N. Pébère, Corrosion protection of carbon steel by an epoxy resin containing organically modified clay, Surface Coat. Technol. 201 (2007) 7408–7415.
DOI: 10.1016/j.surfcoat.2007.02.009
Google Scholar
[2]
J.-M. Yeh, K.-C. Chang, Polymer/layered silicate nanocomposite anticorrosive coatings, J Ind Engg Chem, 14 (2008) 275–291.
DOI: 10.1016/j.jiec.2008.01.011
Google Scholar
[3]
R. L. Twite and G. P. Bierwagen, Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys, Prog. Org. Coat., 33 (1998) 91-100.
DOI: 10.1016/s0300-9440(98)00015-0
Google Scholar
[4]
M. Bethencourt, F. J. Botana, J. J. Calvino, M. Marcos and C. M. A. Rodrıguez, Lanthanide compounds as environmentally-friendly corrosion inhibitors of aluminium alloys: a review, Corros. Sci., 40 (1998) 1803-1819.
DOI: 10.1016/s0010-938x(98)00077-8
Google Scholar
[5]
P. Campestrini, E. V. Westing and J. H. W. de Wit, Influence of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy: Part I: Nucleation and growth, Electrochim. Acta, 46 (2001) 2553–2571.
DOI: 10.1016/s0013-4686(01)00475-3
Google Scholar
[6]
R. B. Faltermeier, A corrosion inhibitor test for copper-based artifacts, Stud. Conserv., 44 (1999) 44, 121-128. (b) C. Sease, Benzotriazole: a review for conservators, Stud. Conserv., 23 (1978) 76-85.
DOI: 10.1179/sic.1999.44.2.121
Google Scholar
[7]
P. G. Cao, J. L. Yao, J. W. Zheng, R. A. Gu and Z. Q. Tian, Comparative Study of Inhibition Effects of Benzotriazole for Metals in Neutral Solutions As Observed with Surface-Enhanced Raman Spectroscopy, Langmuir, 18 (2002) 100-104.
DOI: 10.1021/la010575p
Google Scholar
[8]
D. G. Shchukin, M. Zheludkevich, K. Yasakau, S. Lamaka, M. G. S. Ferreira and H. Mohvald, Layer-by-Layer Assembled Nanocontainers for Self-Healing Corrosion Protection, Adv. Mater., 18 (2006) 1672-1678.
DOI: 10.1002/adma.200502053
Google Scholar
[9]
S.V. Lamaka, M.L. Zheludkevich, K.A. Yasakau, M.F. Montemor, M.G.S. Ferreira, High effective organic inhibitor corrosion for 2024 aluminum alloy, Electrochim. Acta. 52(2007) 7231-7247
DOI: 10.1016/j.electacta.2007.05.058
Google Scholar
[10]
S. H. Sanad, Effect of benzotriazole on acid corrosion of steel, Surf. Technol., 22 (1984) 29-37.
Google Scholar
[11]
G. Bereket and A. Pinarbasi, Electrochemical thermodynamic and kinetic studies of the behaviour of aluminium in hydrochloric acid containing various benzotriazole derivatives, Corros. Eng., Sci. Technol., 39 (2004) 308-312.
DOI: 10.1179/174327804x13136
Google Scholar
[12]
C. S. Yelleswarapu, G. Gu, E. Abdullayev, Y. Lvov and D. V. G. L. N. Rao, Nonlinear optics of nontoxic nanomaterials, Opt. Commun., 283 (2010) 438-441.
DOI: 10.1016/j.optcom.2009.10.001
Google Scholar
[13]
O. M. Magnussen and R. J. Behm, Atomic-scale processes in Cu corrosion and corrosion inhibition, MRS bulletin, 24 (1999) 16-23.
DOI: 10.1557/s0883769400052659
Google Scholar
[14]
D. G. Shchukin, S. V. Lamaka, K. A. Yasakau, M. L. Zheludkevich, M. G. S. Ferreira, H. Mohwald, Active Anticorrosion Coatings with Halloysite Nanocontainers, J. Phys. Chem. C, 112 (2008) 958-964.
DOI: 10.1021/jp076188r
Google Scholar
[15]
D. G. Shchukin and H. Möhwald, Self-Repairing Coatings Containing Active Nanoreservoirs, Small, 3 (2007) 926-943.
DOI: 10.1002/smll.200700064
Google Scholar
[16]
D. Fix, D. Andreeva, Y. Lvov, D. Shchukin and H. Möhwald, Application of Inhibitor-Loaded Halloysite Nanotubes in Active Anti-Corrosive Coatings, Adv. Funct. Mater., 19 (2009) 1720-1727.
DOI: 10.1002/adfm.200800946
Google Scholar
[17]
D. Shchukin and H. Möhwald, Adv. Funct. Mater., Surface-Engineered Nanocontainers for Entrapment of Corrosion Inhibitors, 17 (2007) 1451-1458.
DOI: 10.1002/adfm.200601226
Google Scholar
[18]
E. Abdullayev, R. Price, D. Shchukin and Y. Lvov, Halloysite Tubes as Nanocontainers for Anticorrosion Coating with Benzotriazole, ACS Appl. Mater. Interfaces, 1 (2009) 1437-1443.
DOI: 10.1021/am9002028
Google Scholar
[19]
A.N. Kramov, N.N. Voevodin, V.N. Balbyshev, R.A. Mantz, Sol-gel-derived corrosion protective with controllable release of incorporate organic corrosion inhibitors, Thin Solid Films 483 (2005) 191-196.].
DOI: 10.1016/j.tsf.2004.12.021
Google Scholar
[20]
K. Koch, B. Bhushan, H. J. Ensikat, W. Barthlott, Self-healing of voids in the wax coating on plant surfaces, Philos. Trans. R. Soc. A 367 (2009) 1673-1688.
DOI: 10.1098/rsta.2009.0015
Google Scholar
[21]
K. Koch, H. J. Ensikat, The hydrophobic coatings of plant surfaces: Epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly, Micron, 39 (2008) 759-772.
DOI: 10.1016/j.micron.2007.11.010
Google Scholar
[22]
N. Filipovic, M. Kojic, A. Tsuda, Modelling thrombosis using dissipative particle dynamics method, Philos. Trans. R. Soc. A 366 (2008) 3265-3279.
DOI: 10.1098/rsta.2008.0097
Google Scholar
[23]
S. K. Ghosh, Ed., Self-Healing Materials: Fundamentals, Design Strategies, and Applications; Wiley-VCH: Weinheim, Germany, 2008.
Google Scholar
[24]
D. Raps, T. Hack, J. Wehr, M. L. Zheludkevich, A. C. Bastos, M. G. S. Ferreira, O. Nuyken, Electrochemical study of inhibitor-containing organic–inorganic hybrid coatings on AA2024, Corros. Sci. 51 (2009) 1012-1021.
DOI: 10.1016/j.corsci.2009.02.018
Google Scholar
[25]
G. Blustein, A. R. D. Sarli, J. A. Jae´n, R. Romagnoli, B. D. Amo, Study of iron benzoate as a novel steel corrosion inhibitor pigment for protective paint films, Corros. Sci. 49 (2007) 4202-4231.
DOI: 10.1016/j.corsci.2007.05.008
Google Scholar
[26]
E. W. Brooman, Modifying organic coatings to provide corrosion resistance, Part I: Background and general principles, Metal Finishing 100 (2002) 48-53.
DOI: 10.1016/s0026-0576(02)80019-8
Google Scholar
[27]
R. G. Buchheit, H. Guan, S. Mahajanam, F. Wong, Active corrosion protection and corrosion sensing in chromate-free organic coatings, Prog. Org. Coat., 47 (2003) 174 - 182.
DOI: 10.1016/j.porgcoat.2003.08.003
Google Scholar
[28]
J. Tedim, S. K. Poznyak, A. Kuznetsova, D. Raps, T. Hack, M. L. Zheludkevich, M. G. S. Ferreira, ACS Appl. Mater. Interfaces, 2 (2010) 1528.
DOI: 10.1021/am100174t
Google Scholar
[29]
H. Tatematsu, T. Sasaki, Repair materials system for chloride-induced corrosion of reinforcing bars, Cem. Concr. Compos. 25 (2003) 123-129.
DOI: 10.1016/s0958-9465(01)00059-2
Google Scholar
[30]
K. D. Ralston, S. Chrisanti, T. L. Young and R. G. Buchheit, Corrosion Inhibition of Aluminum Alloy 2024-T3 by Aqueous Vanadium Species, J. Electrochem. Soc., 155 (2008) C350-C359.
DOI: 10.1149/1.2907772
Google Scholar
[31]
J.-Y. Uan, J.-K. Lin, Y.-S. Tung, Direct growth of oriented Mg–Al layered double hydroxide film on Mg alloy in aqueous HCO3−/CO32− solution, J. Mater. Chem., 20 (2010) 761-766.
DOI: 10.1039/b917177k
Google Scholar
[32]
J. Wang, D. Li, X. Yu, X. Jing, M. Zhang and Z. Jiang, Hydrotalcite conversion coating on Mg alloy and its corrosion resistance, J. Alloys Compd., 494 (2010) 271-274.
DOI: 10.1016/j.jallcom.2010.01.007
Google Scholar
[33]
X. Guo, S. Xu, L. Zhao, W. Lu, F. Zhang, D. G. Evans and X. Duan, One-Step Hydrothermal Crystallization of a Layered Double Hydroxide/Alumina Bilayer Film on Aluminum and Its Corrosion Resistance Properties, Langmuir, 25 (2009) 9894-9897.
DOI: 10.1021/la901012w
Google Scholar
[34]
C. D. Hoyo, Layered double hydroxides and human health: An overview, Appl. Clay Sci., 36 (2007) 103-121.
Google Scholar
[35]
J. Tedim, M. L. Zheludkevich, A. N. Salak, A. Lisenkov, M. G. S. Ferreira, Nanostructured LDH-container layer with active protection functionality, J. Mater. Chem., 21 (2011) 15464-15470.
DOI: 10.1039/c1jm12463c
Google Scholar
[36]
J. Tedim, A. Kuznetsova, A.N. Salak, F. Montemor, D. Snihirova, M. Pilz, M.L. Zheludkevich, M.G.S. Ferreira, Zn–Al layered double hydroxides as chloride nanotraps in active protective coatings, Corros. Sci. 55 (2012) 1–4.
DOI: 10.1016/j.corsci.2011.10.003
Google Scholar
[37]
Y. Wang, D. Zhang, Synthesis, characterization, and controlled release anticorrosion behavior of benzoate intercalated Zn–Al layered double hydroxides, Mater Res Bull, 46 (2011) 1963–(1968)
DOI: 10.1016/j.materresbull.2011.07.021
Google Scholar
[38]
S. K. Poznyak, J. Tedim, L. M. Rodrigues, A. N. Salak, M. L. Zheludkevich, L. F. P. Dick, M. G. S. Ferreira, Novel Inorganic Host Layered Double Hydroxides Intercalated with Guest Organic Inhibitors for Anticorrosion Applications, Applied Mater. Interface, 1 (2009) 2353–2362.
DOI: 10.1021/am900495r
Google Scholar
[39]
G. Williams and H. N. McMurray, Anion-Exchange Inhibition of Filiform Corrosion on Organic Coated AA2024-T3 Aluminum Alloy by Hydrotalcite-Like Pigments, Electrochem. Solid-State Lett., 6 (2003) B9-B11; (b) G. Williams and H. N. McMurray, Inhibition of Filiform Corrosion on Polymer Coated AA2024-T3 by Hydrotalcite-Like Pigments Incorporating Organic Anions, Electrochem. Solid-State Lett., 7 (2004) B13-B15.
DOI: 10.1149/1.1539771
Google Scholar
[40]
F. Z. Zhang, M. Sun, S. L. Xu, L. L. Zhao and B. W. Zhang, Fabrication of oriented layered double hydroxide films by spin coating and their use in corrosion protection, Chem. Eng. J., 141 (2008) 362-367.
DOI: 10.1016/j.cej.2008.03.016
Google Scholar
[41]
W. Zhang and R. G. Buchheit, Hydrotalcite Coating Formation on Al-Cu-Mg Alloys from Oxidizing Bath Chemistries, Corrosion, 58 (2002) 591-600.
DOI: 10.5006/1.3277650
Google Scholar
[42]
J. K. Lin and J. Y. Uan, Formation of Mg,Al-hydrotalcite conversion coating on Mg alloy in aqueous HCO3−/CO32− and corresponding protection against corrosion by the coating, Corros. Sci., 51 (2009) 1181-1188.
DOI: 10.1016/j.corsci.2009.02.007
Google Scholar
[43]
Wei-I Hung, Kung-Chin Chang, Ya-Han Chang and Jui-Ming Yeh, Advanced Anticorrosive Coatings Prepared from Polymer-Clay Nanocomposite Materials in: Advances in Nanocomposites - Synthesis, Characterization and Industrial Applications, .Ed. B. Reddy, 2011, pp.561-583.
DOI: 10.5772/15355
Google Scholar
[44]
R. G. Buchheit, S.B. Mamidipally, P. Schmutz, H. Guan, Active corrosion protection in Ce-modifiedhHydrotalcite conversion coatings, Corrosion 58 (2002) 3-14.
DOI: 10.5006/1.3277303
Google Scholar
[45]
R. B. Leggat, W. Zhang, R.G. Buchheit, S.R. Taylor, Performance of hydrotalcite conversion treatments on AA2024-T3 when used in a coating system, Corrosion 58 (2002) 322-328.
DOI: 10.5006/1.3287681
Google Scholar
[46]
(a) Yeh, J. M.; Liou, S. J.; Lai, C. Y.; Wu, P. C. & Tsai, T. Y. (2001). Enhancement of corrosion protection effect in polyaniline via the formation of polyaniline clay nanocomposite materials. Chem. Mater. 13 (2001) 1131-1136 (b) J.-M. Yeh, K.-C. Chang, Polymer/layered silicate nanocomposite anticorrosive coatings, J Industrial Eng Chem 14 (2008) 275–291.
DOI: 10.1021/cm000938r
Google Scholar
[47]
T. Sugama, Polyphenylenesulfied/montomorillonite clay nanocomposite coatings: their efficacy in protecting steel against corrosion, Materials Letters 60 (2006) 2700–2706.
DOI: 10.1016/j.matlet.2006.01.111
Google Scholar
[48]
K.-C. Chang, S.-T. Chen, H.-F. Lin, C.-Y. Lin, H.-H. Huang, J.-M. Yeh,Y. H. Yu, Effect of clay on the corrosion protection efficiency of PMMA/Na+-MMT clay nanocomposite coatings evaluated by electrochemical measurements. Eur. Polym. J. 44 (2008) 13–23.
DOI: 10.1016/j.eurpolymj.2007.10.011
Google Scholar
[49]
C.-F. Dai, P.-R. Li, J.-M. Yeh, Comparative studies for the effect of intercalating agent on the physical properties of epoxy resin-clay based nanocomposite materials, Eur. Polym. J. 44 (2008) 2439–2447.
DOI: 10.1016/j.eurpolymj.2008.06.015
Google Scholar
[50]
D. Piazza, D. S. Silveira, N. P. Lorandi, E. J. Birriel, L. C. Scienza, A. J. Zattera, Polyester-based powder coatings with montmorillonite nanoparticles applied on carbon steel, Prog Org. Coat. 73 (2012) 42– 46.
DOI: 10.1016/j.porgcoat.2011.08.018
Google Scholar
[51]
M. G. Hosseini, M. Jafari, R. Najjar, Effect of polyaniline–montmorillonite nanocomposite powders addition on corrosion performance of epoxy coatings on Al 5000, Surface Coat. Technol. 206 (2011) 280–286.
DOI: 10.1016/j.surfcoat.2011.07.012
Google Scholar
[52]
R. David, S.P. Tambe, S.K. Singh, V.S. Raja, D. Kumar, Thermally sprayable grafted LDPE/nanoclay composite coating for corrosion protection, Surface Coat. Technol. 205 (2011) 5470–5477.
DOI: 10.1016/j.surfcoat.2011.06.022
Google Scholar
[53]
N. Wang, K. Cheng, H. Wu, C. Wang, Q. Wang, F. Wang, Effect of nano-sized mesoporous silica MCM-41 and MMT on corrosion properties of epoxy coating, Prog. Org. Coat. 75 (2012) 386– 391.
DOI: 10.1016/j.porgcoat.2012.07.009
Google Scholar
[54]
S. Ashhari, A. A. Sarabi, S. M. Kasiriha, D. Zaarei, Aliphatic polyurethane- montmorillonite nanocomposite coatings: Preparation, characterization, and anticorrosive properties. Appl. Polym. Sci., 119 (2011) 523–529.
DOI: 10.1002/app.32656
Google Scholar
[55]
M. R. Bagherzadeh, F. Mahdavi, Preparation of epoxy–clay nanocomposite and investigation on its anti-corrosive behavior in epoxy coating. Prog. Org. Coat., 60 (2007) 117–120.
DOI: 10.1016/j.porgcoat.2007.07.011
Google Scholar
[56]
M. Heidariana, M. R. Shishesaza, S. M. Kassiriha, M. Nematollahia, Characterization of structure and corrosion resistivity of polyurethane/organoclay nanocomposite coatings prepared through an ultrasonication assisted process. Prog. Org. Coat., 68 (2010) 180–188.
DOI: 10.1016/j.porgcoat.2010.02.006
Google Scholar
[57]
M. Nematollahi, M. Heidarian, M. Peikari, S. M. Kassiriha, N. Arianpouya, M. Esmaeilpour, Comparison Between the effect of nanoglass flake and montmorillonite organoclay on corrosion performance of epoxy coating. Corros. Sci., 52 (2010) 1809–1817.
DOI: 10.1016/j.corsci.2010.01.024
Google Scholar
[58]
E. Darmiani, I. Danaee, G. R. Rashed, D. Zaarei, Formulation and study of corrosion prevention behaviour of epoxy cerium nitrate–montmorillonite nanocomposite coated carbon steel, J. Coat. Technol. Res. (2013).
DOI: 10.1007/s11998-012-9463-1
Google Scholar
[59]
E. Abdullayev, D. Shchukin and Y. Lvov, Halloysite clay nanotubes as nanoreservoirs for corrosion inhibitors and template for layer-by-layer encapsulation, Polym. Mater. Sci. & Eng. 99 (2008) 331-332.
Google Scholar
[60]
Y. Lvov, D. Shchukin, H.Mohwald and R. Price, Halloysite clay nanotubes for controlled release of protective agents, ACS Nano 2 (2008) 814-820.
DOI: 10.1021/nn800259q
Google Scholar
[61]
V. Vergaro, E. Abdullayev, Y. Lvov, A. Zeitoun, R. Cingolani and S. Leporatti, Cytocompatibility and Uptake of Halloysite Clay Nanotubes, Biomacromolecules, 11 (2010) 820-826.
DOI: 10.1021/bm9014446
Google Scholar
[62]
M. Du, B. Guo, Y. Lei, M. Liu and D. Jia Carboxylated butadiene–styrene rubber/ halloysite nanotube nanocomposites: Interfacial interaction and performance, Polymer, 49 (2008) 4871-4876.
DOI: 10.1016/j.polymer.2008.08.042
Google Scholar
[63]
M Du, B Guo, D Jia, Newly emerging applications of halloysite nanotubes: A review, Polymer I. 59 (2010) 574-582.
DOI: 10.1002/pi.2754
Google Scholar
[64]
P. Pasbakhsh, H. Ismail, M. N. Ahmad Fauzi and A. Abu bakar EPDM/modified halloysite nanotube, Apllied Clay Sci, 48 (2010) 405-413.
DOI: 10.1016/j.clay.2010.01.015
Google Scholar
[65]
E. Abdullayev, Y. Lvov, Clay nanotubes for corrosion inhibitor encapsulation: release control with end Stoppers, J. Mater. Chem., 20 (2010), 6681–6687
DOI: 10.1039/c0jm00810a
Google Scholar