Preparation of BaZrO3 Nanocrystals at Low Temperature

Article Preview

Abstract:

Barium zirconate (BaZrO3) was prepared by the composite-hydroxide-mediated (CHM) approach at low temperature. The CHM method is based on chemical reactions of materials in the eutectic hydroxide melt. In this method, the eutectic point at an sodium hydroxide (NaOH) : potassium hydroxide (KOH) molar ratio of 51.5 : 48.5 is about 165°C. In the present work, the low-temperature preparation and morphology of BaZrO3 nanocrystals were investigated. Zirconium tetra-n-butoxide ((CH3CH2CH2CH2O)4Zr) and/or zirconium dioxide (ZrO2) were used as a zirconium source. X-ray diffraction measurements confirmed that the BaZrO3 had a perovskite structure. Barium hydroxide (Ba (OH)2) was used as a barium source. BaZrO3 nanoparticles were obtained when (CH3CH2CH2CH2O)4Zr was used as a raw material. On the other hand, BaZrO3 nanocubes were formed when ZrO2 was used as a raw material. Scanning electron microscopy and transmission electron microscopy observations indicated that BaZrO3 nanocrystals were formed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-168

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Nakashima, I. Fujii, S. Wada: J. Ceram. Soc. Japan, Vol. 119 (2011), pp.535-537.

Google Scholar

[2] K. Nakashima, I. Fujii, S. Wada: J. Soc. Inorg. Mater. Japan, Vol. 19 (2012), pp.97-103.

Google Scholar

[3] K. Nakashima, M. Kera, I. Fujii, S. Wada: Ceram. Int., Vol. 39 (2013), pp.3231-3234.

Google Scholar

[4] S. Wada, A. Nozawa, M. Ohno, H. Kanemoto, T. Tsurumi, Y. Kameshima, Y. Ohba: J. Mater. Sci., Vol. 44 (2009), pp.5161-5166.

DOI: 10.1007/s10853-009-3705-3

Google Scholar

[5] S. Adireddy, C. Lin, B. Cao, W. Zhou, G. Caruntu: Chem. Mater., Vol. 22 (2010), p.1946-(1948).

Google Scholar

[6] V. R. Calderone, A. Testino, M. T. Buscaglia, M. Bassoli, C. Bottino, M. Viviani, V. Buscaglia, P. Nanni: Chem. Mater., Vol. 18 (2006), pp.1627-1633.

DOI: 10.1021/cm0525961

Google Scholar

[7] F.A. Rabuffetti, H. -S. Kim, J. A. Enterkin, Y. Wang, C. H. Lanier, L. D. Marks, K. R. Poeppelmeier, P. C. Stair: Chem. Mater., Vol. 20 (2008), pp.5628-5635.

DOI: 10.1021/cm801192t

Google Scholar

[8] A. Nozawa, T. Kuwabara, H. Uchida, C. Moriyoshi, Y. Kuroiwa, S. Wada: Key Eng. Mater., Vol. 421-422 (2010), pp.514-517.

DOI: 10.4028/www.scientific.net/kem.421-422.514

Google Scholar

[9] H. Liu, C. Hu, Z. L. Wang: Nano Lett., Vol. 6 (2006), pp.1535-1540.

Google Scholar

[10] Y. Sun, Y. Xia: Science, Vol. 298 (2002), pp.2176-2179.

Google Scholar

[11] D. Yu, V. W. -W. Yam: J. Am. Chem. Soc., Vol. 126 (2004), pp.13200-13201.

Google Scholar

[12] Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L. -P. Wen, Y. Xia: J. Am. Chem. Soc., Vol. 132 (2010), pp.11372-11378.

Google Scholar

[13] J. Zhang, M. R. Langille, M. L. Personick, K. Zhang, S. Li, C. A. Mirkin: J. Am. Chem. Soc., Vol. 132 (2010), pp.14012-14014.

DOI: 10.1021/ja106394k

Google Scholar

[14] T. Minami, R. Nishiyabu, M. Iyoda, Y. Kubo: Chem. Commun., Vol. 46 (2010), pp.8603-8605.

Google Scholar