Influence of Nanograin Size ZrO2 and Al2O3 Ceramics on Biological Response of Cells

Article Preview

Abstract:

The influence of the grain size of alumina and zirconia ceramics on the spreading and adhesion of MG63 cell lines was investigated. Single-component ceramics and layered composite ceramics were prepared by electrophoretic deposition, uniaxial pressing and sintering. The grain size of zirconia was 100 nm to 2.7 μm and that of alumina was 0.5 μm to 1.5 μm. Subsequently, sample surfaces were polished and thermally etched. Biological tests of adhesion (0.5 to 8 h) were used to evaluate the influence of grain size on biological response. The highest cell spreading was obtained for ZrO2 ceramics with an average grain size of 100 and 120 nm. The cell selection was observed on layered ZrO2/Al2O3 composites. The cells predominantly adhered to ZrO2 layers. The results showed a positive influence of nanostructured ceramic surfaces on biological behaviour of MG63 cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

132-137

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bächle, F Butz, U. Hübner, E. Bakalinis, R. J. Kohal, Behavior of CAL72 osteoblast-like cells cultured on zirconia ceramics with different surface topographies,. Clinical Oral Implants Research. 18 (2006) 7.

DOI: 10.1111/j.1600-0501.2006.01292.x

Google Scholar

[2] T. J. Webster, R. W. Siegel, R. Bizios, Osteoblast adhesion on nanophase ceramics. Biomaterials. 20 (1999) 1221-1227.

DOI: 10.1016/s0142-9612(99)00020-4

Google Scholar

[3] T. J. Webster, C. Ergun, R. H. Doremus, R. Bizios, Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. Journal of Biomedical Research. 51 (2000) 475-483.

DOI: 10.1002/1097-4636(20000905)51:3<475::aid-jbm23>3.0.co;2-9

Google Scholar

[4] T. J. Webster, C. Ergun, R. H. Doremus, R. W. Siegel, R. Bizos, Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials. 21 (2000) 1803-1810.

DOI: 10.1016/s0142-9612(00)00075-2

Google Scholar

[5] M. Arin, M., H. Yazici, G. Goller, Biocompability Properties of ZrO(2) Ceramics and ZrO(2)-TiN Composites. Bioceramics 21. 396-398 (2009) 51-54.

DOI: 10.4028/www.scientific.net/kem.396-398.51

Google Scholar

[6] S. Lee, T. Kasuga, K. Kato, Effects of Y2O3 particle size on cytotoxicity and cell morphology. J. Cer. Soc. Jap. 6 (2010) 428-433.

DOI: 10.2109/jcersj2.118.428

Google Scholar

[7] X. Luo, Z. Gao, S. Yan, W. Deng, W. Zhang, W. Yan, Functional behaviour of human periodontal ligament cells around various dental implants. Key Engineering Materials. 361-363 (2008) 837-840.

DOI: 10.4028/www.scientific.net/kem.361-363.837

Google Scholar

[8] A. J. Dulgar-Tulloch, R. Bizios, R. W. Siegel, Human mesenchymal stem cell adhesion and proliferation in response to ceramic chemistry and nanoscale topography. J. Biomed. Mat. Res. Part A. 90A (2009) 586-594.

DOI: 10.1002/jbm.a.32116

Google Scholar

[9] D. Yamashita, K. Kanabara, M. Machigashira, M. Miyamoto, H. Sato, Y. Izumi, S. Ban, Proliferation of osteoblast-like cells on Zirconia/Alumina nanocomposite. Key Engineering Materials. 361-363 (2007) 1099-1102.

DOI: 10.4028/www.scientific.net/kem.361-363.1099

Google Scholar

[10] S.T. Affaffatato, R. Taddei, P. Rocchi, M. Fagnano, C. Ciapetti, G. Toni, Advanced Nanocomposite Materials for Orthopaedic Applications. I. A Long-Term In Vitro Wear Study of Zirconia-Toughened Alumina. J. Biomed. Mat. Res. Part B: Applied Biomaterials. 78B (2005).

DOI: 10.1002/jbm.b.30462

Google Scholar

[11] D. J. Kim, et al., Cellular response assessment to zirconia-alumina composite: An in vitro experimental study. Bioceramics18. 309-311 (2006) 433-436.

DOI: 10.4028/www.scientific.net/kem.309-311.433

Google Scholar

[12] X. He, et al., Zirconia toughened alumina ceramic foams for potential bone graft applications: fabrication, bioactivation, and cellular responses. J. Mat. Sci. Mat. Med. 19 (2008) 2743-2749.

DOI: 10.1007/s10856-008-3401-x

Google Scholar

[13] O. Roualdes, et al., In vitro and in vivo evaluation of an alumina-zirconia composite for arthroplasty applications. Biomaterials. 31 (2010) 2043-(2054).

DOI: 10.1016/j.biomaterials.2009.11.107

Google Scholar

[14] M. Hashiguchi, et al., Effect of surface treatments on bonding strength of zirconia to dental cements. Bioceramics 21 396-398 (2009) 575-578.

DOI: 10.4028/www.scientific.net/kem.396-398.575

Google Scholar

[15] D. J. Kim, et al., Zirconia/alumina composite dental implant abutments. Bioceramics16 254-2 (2004) 699-702.

Google Scholar

[16] S. Zhang, et al., Biological Behavior of Osteoblast-like Cells on Titania and Zirconia Films Deposited by Cathodic Arc Deposition. Biointerphases. 2012 Dec; 7(1-4): 60. doi: 10. 1007/s13758-012-0060-8.

DOI: 10.1007/s13758-012-0060-8

Google Scholar

[17] OLYMPUS. Confocal laser scanning microscope LEXT OLS 3000: Manual 3. 0. (2010).

Google Scholar