Quantum-Mechanical Study of Single-Crystalline and Polycrystalline Elastic Properties of Mg-Substituted Calcite Crystals

Article Preview

Abstract:

We use quantum-mechanical calculations to study single-crystalline elastic properties of (Ca,Mg)CO3 crystals with concentrations ranging from calcite CaCO3 to magnesite MgCO3. By analyzing results for a dense set of distributions of Ca and Mg atoms within 30-atom supercells, our theoretical study shows that those atomic configurations, that minimize the total energy for a given concentration, are characterized by elastic constants that either increase with the Mg content or remain nearly constants. Employing these ab initio calculated single-crystalline elastic parameters, the polycrystalline elastic properties of (Ca,Mg)CO3 aggregates are determined using a mean-field self-consistent homogenization method. The computed integral elastic moduli (bulk and shear) show a significant stiffening impact of Mg atoms on calcite crystals. Our analysis also demonstrates that it is not advantageous to use a granular two-phase composite of stoichiometric calcite and magnesite instead of substituting individual Ca and Mg atoms. Such two-phase aggregates are not significantly thermodynamically favorable and do not offer any strong additional stiffening effect.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 592-593)

Pages:

335-341

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.A. Lowenstam: Science Vol. 211 (1981), p.1126.

Google Scholar

[2] S. Mann, J. Webb and R.J.P. Williams: On biomineralization (New York: VCH Press 1989).

Google Scholar

[3] H.A. Lowenstam and S. Weiner: On biomineralization (New York (NY): Oxford University Press 1989).

Google Scholar

[4] S. Mann: J. Mater. Chem. Vol. 5 (1995), p.935.

Google Scholar

[5] S. Weiner and L. Addadi: J. Mater. Chem. Vol. 7 (1997), p.689.

Google Scholar

[6] F.C. Meldrum: Int. Mater. Rev. Vol. 48 (2003), p.187.

Google Scholar

[7] H. Fabritius, C. Sachs, P. Romano and D. Raabe: Adv. Mater. Vol. 21 (2009), p.391.

Google Scholar

[8] H.O. Fabritius, E. Karsten, K. Balasundaram, S. Hild, K. Huemer and D. Raabe: Z. Kristallogr. Vol. 227 (2012), p.766.

Google Scholar

[9] W. Schmahl, E. Griesshaber, K. Kelm, A. Goetz, G. Jordan, A. Ball, D. Xu, C. Merkel and U. Brand: Z. Kristallogr. Vol. 227 (2012), p.793.

DOI: 10.1524/zkri.2012.1542

Google Scholar

[10] B. Seidl, C. Reisecker, S. Hild, E. Griesshaber and A. Ziegler: Z. Kristallogr. Vol. 227 (2012), p.777.

Google Scholar

[11] F. Neues, A. Ziegler and M. Epple: Cryst. Eng. Comm. Vol. 9 (2007), p.1245.

Google Scholar

[12] F. Boßelmann, P. Romano, H. Fabritius, D. Raabe and M. Epple: Thermochimica Acta Vol. 463 (2007), p.65.

DOI: 10.1016/j.tca.2007.07.018

Google Scholar

[13] E. Zolotoyabko, E.N. Caspi, J.S. Fieramosca, R.B.V. Dreele, F. Marin, G. Mor, L.A.S. Weiner and Y. Politi: Cryst. Growth and Design Vol. 101 (2010), p.1207.

DOI: 10.1021/cg901195t

Google Scholar

[14] A. Becker, A. Ziegler and M. Epple: Dalton Trans. Issue 10 (2005), p.1814.

Google Scholar

[15] S. Hennig, S. Hild, H.O. Fabritius, C. Soor and A. Ziegler: Cryst. Growth Des. Vol. 12 (2012), p.646.

Google Scholar

[16] S. Nikolov, M. Petrov, L. Lymperakis, M. Friák, C. Sachs, H. -O. Fabritius, D. Raabe, and J. Neugebauer: Adv. Mater. Vol. 22 (2010), p.519.

DOI: 10.1002/adma.200902019

Google Scholar

[17] S. Nikolov, H. -O. Fabritius, M. Petrov, M. Friák, L. Lymperakis, C. Sachs, D. Raabe, and J. Neugebauer: J. of Mech. Behav. of Biomed. Mat. Vol. 4 (2011), p.129.

Google Scholar

[18] A. Pavese, M. Catti, G.D. Price and R.A. Jackson: Phys. Chem. Minerals Vol. 19 (1992), p.80.

Google Scholar

[19] M. Catti, A. Pavese, E. Apr`a and C. Roetti: Phys. Chem. Minerals Vol. 20 (1993), p.104.

Google Scholar

[20] M. Catti, A. Pavese, D. Dovesi and V.R. Saunders: Phys. Rev. B Vol. 47 (1993), p.9189.

Google Scholar

[21] M. Catti, A. Pavese and G.D. Price: Phys. Chem. Minerals Vol. 19 (1993), p.472.

Google Scholar

[22] A. Pavese, M. Catti, S.C. Parker and A. Wall: Phys. Chem. Minerals Vol. 23 (1996), p.89.

Google Scholar

[23] M. Prencipe, F. Pascale, C.M. Zicovich-Wilson, V.R. Saunders, R. Orlando and R. Dovesi: Phys. Chem. Minerals Vol. 31 (2004), p.559.

DOI: 10.1007/s00269-004-0418-7

Google Scholar

[24] L. Valenzano, Y. Noël, R. Orlando, C.M. Zicovich-Wilson, M. Ferrero and R. Dovesi: Theor. Chem. Acc. Vol. 117 (2007), p.991.

DOI: 10.1007/s00214-006-0213-2

Google Scholar

[25] H. Akbarzadeh, M. Shokouhi and G.A. Parsafar: Mol. Phys. Vol. 106 (2008), p.2545.

Google Scholar

[26] J. Kawano, A. Miyake, N. Shimobayashi and M. Kitamura: J. Phys.: Condens. Matter Vol. 21 (2009), p.095406.

DOI: 10.1088/0953-8984/21/9/095406

Google Scholar

[27] P. Elstnerová, M. Friák, H.O. Fabritius, L. Lymperakis, T. Hickel, M. Petrov, S. Nikolov, D. Raabe, A. Ziegler, S. Hild and J. Neugebauer: Acta Biomaterialia Vol. 6 (2010), p.4506.

DOI: 10.1016/j.actbio.2010.07.015

Google Scholar

[28] P. Elstnerová, M. Friák, H.O. Fabritius, L. Lymperakis, T. Hickel, M. Petrov, S. Nikolov, D. Raabe, A. Ziegler, S. Hild and J. Neugebauer: In Sborník doktorské konference: Více-úrovňový design pokrokových materiálů. Edited by M. Šob and I. Dlouhý, Brno: Ústav fyziky materiálů AVČR (2010).

DOI: 10.1016/j.actbio.2010.07.015

Google Scholar

[29] L. -F. Zhu, M. Friák, L. Lymperakis, H. Titrian, U. Aydin, A. M. Janus, H. -O. Fabritius, A. Ziegler, S. Nikolov, P. Hemzalová, D. Raabe and J. Neugebauer: J. of Mech. Behav. of Biomed. Mat. Vol. 20 (2013), p.296.

DOI: 10.4028/www.scientific.net/kem.592-593.335

Google Scholar

[30] P. Hohenberg and W. Kohn: Phys. Rev. Vol. 136 (1964), p. B864.

Google Scholar

[31] W. Kohn and L.J. Sham: Phys. Rev. Vol. 140 (1965), p. A1133.

Google Scholar

[32] J.P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. Vol. 77 (1996), p.3865.

Google Scholar

[33] G. Kresse, and J. Furthmüller: Phys. Rev. B Vol. 54 (1996), p.11169.

Google Scholar

[34] G. Kresse and J. Hafner: Phys. Rev. B Vol. 47 (1993), p.558.

Google Scholar

[35] P.E. Blöchl: Phys. Rev. B Vol. 50 (1994), p.17953.

Google Scholar

[36] T. R. Middya and A. N. Basu: J. Appl. Phys. Vol. 59 (1986), p.2368.

Google Scholar

[37] T. R. Middya, M. Paul and A. N. Basu: J. Appl. Phys. Vol. 59 (1986), p.2376.

Google Scholar

[38] M. Friák, W. A. Counts, D. Ma, B. Sander, D. Holec, D. Raabe and J. Neugebauer: Materials Vol. 5 (2012), p.1853.

Google Scholar

[39] H. Titrian, U. Aydin, M. Friák, D. Ma, D. Raabe and J. Neugebauer: Mater. Res. Soc. Symp. Proc. Vol. 1524 (2013), DOI: 10. 1557/opl. 201. 41.

Google Scholar

[40] R. Zeller and P.H. Dederichs: Phys. Stat. Solid. B Vol. 55 (1973), p.831.

Google Scholar

[41] K. Momma and F. and Izumi: J. Appl. Crystallogr. Vol. 44 (1997), p.1272.

Google Scholar