Multiscale Heterogeneity of Bone Microporosities and Tissue Scaffolds

Article Preview

Abstract:

Our aim was to use stereology to quantify the volume fraction of osteocyte lacunes, volume fraction of large blood vessels, numerical density of osteocyte lacunes, volume of osteocyte lacunae and bone surface in series of micro-CT images representing samples of spongy and compact bone of human tibia. The spongy bone had a smaller volume fraction of osteocyte lacunes, a greater numerical density of bone lacunes, a smaller volume of the lacunes within the same bone volume and a greater bone surface density when compared to the compact bone. Stereology provided us with data on hierarchical organization of bone structural heterogeneity with reasonable time costs.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 592-593)

Pages:

350-353

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.C. Corwin, Bone mechanics handbook, CRC Press, Boca Raton, (2001).

Google Scholar

[2] Z. Tonar, I. Khadang, P. Fiala, L. Nedorost, P. Kochová, Quantification of compact bone microporosities in the basal and alveolar portions of the human mandible using osteocyte lacunar density and area fraction of vascular canals, Ann. Anat. 193 (2011).

DOI: 10.1016/j.aanat.2011.02.001

Google Scholar

[3] M.L. Bouxsein, S.K. Boyd, B. Christiansen, R.E. Guldberg, K.J. Jepsen, R. Müller, Guidelines for assessment of bone microstructure in rodents using micro-computed tomography, J. Bone Miner. Res. 25 (2010) 1468-1486.

DOI: 10.1002/jbmr.141

Google Scholar

[4] E. Donnelly, Methods for assessing bone quality, Clin. Orthop. Relat. Res. 469 (2011) 2128-2138.

Google Scholar

[5] M.E. Draenert, A.I. Draenert, F. Forriol, M. Cerler, K.H. Kunzelmann, R. Hickel, K. Draenert, Value and limits of μ-CT for nondemineralized bone tissue processing, Microsc. Res. Techn. 75 (2012) 416-424.

DOI: 10.1002/jemt.21072

Google Scholar

[6] P.R. Mouton, Principles and Practices of Unbiased Stereology. An Introduction for Bioscientists, The Johns Hopkins University Press, Baltimore, (2002).

Google Scholar

[7] L. Kubínová, J. Janáček, Estimating surface area by the isotropic fakir method from thick slices cut in an arbitrary direction, J. Microsc. 191 (1998) 201-211.

DOI: 10.1046/j.1365-2818.1998.00356.x

Google Scholar

[8] D.G. Kim, G.T. Christopherson, X.N. Dong, D.P. Fyhrie, Y.N. Yeni, The effect of microcomputed tomography scanning and reconstruction voxel size on the accuracy of stereological measurements in human cancellous bone, Bone 35 (2004) 1375-1382.

DOI: 10.1016/j.bone.2004.09.007

Google Scholar

[9] M.L. Brandi, Microarchitecture, the key to bone quality, Rheumatology 48 (2009), 3-8.

Google Scholar

[10] M. Ito, Recent progress in bone imaging for osteoporosis research. J. Bone Miner. Metabol. 29 (2011) 131-140.

DOI: 10.1007/s00774-010-0258-0

Google Scholar

[11] M.G. Mullender, D.D. Van der Meer, R. Huiskes, P. Lips, Osteocyte density changes in aging and osteoporosis, Bone 18 (1996) 109-113.

DOI: 10.1016/8756-3282(95)00444-0

Google Scholar

[12] V. Cane, G. Marotti, G. Volpi, D. Zaffe, S. Palazzini, F. Remaggi, M.A. Muglia, Size and density of osteocyte lacunae in different regions of bones, Calc. Tissue Int. 34 (1982) 558-563.

DOI: 10.1007/bf02411304

Google Scholar

[13] J. Cano, J. Campo, J.J. Vaquero, J.M. Martínez González, A. Bascones, High resolution image in bone biology II. Medicina oral, patología oral y cirugía bucal, 13 (2008) E31-35.

Google Scholar

[14] F. Particelli, L. Mecozzi, A. Beraudi, M. Montesi, F. Baruffaldi, M. Viceconti, A comparison between micro-CT and histology for the evaluation of cortical bone: effect of polymethylmethacrylate embedding on structural parameters, J Microsc 245 (2012).

DOI: 10.1111/j.1365-2818.2011.03573.x

Google Scholar