Fractographic Analysis of Surface and Failure Mechanisms of Nanotitanium after Laser Shock-Wave Treatment

Article Preview

Abstract:

In this work, the effect of the laser shock-wave treatment on the surface morphology and regularities in failure of nanotitanium is investigated. Based on the data of fractodiagnostics it is established that the shock-wave treatment changes the mechanism of failure from the brittle chipping to the mixed ductile-brittle one by the shear + separation scheme.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 592-593)

Pages:

346-349

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomat. 8 (2012) 3888-3903.

DOI: 10.1016/j.actbio.2012.06.037

Google Scholar

[2] L.S. Morais, G.G. Serra, C.A. Muller et al., Titanium alloy mini-implants for orthodontic anchorage: immediate loading and metal ion release, Acta Biomat. 3 (2007) 331–339.

DOI: 10.1016/j.actbio.2006.10.010

Google Scholar

[3] B.S. Yilbas, S.J. Hyder, Laser pulse heating and flexural wave generation during treatment of metallic surface, J. of Mat. Proc. Techn. 141 (2003), 1-8.

DOI: 10.1016/s0924-0136(02)00929-9

Google Scholar

[4] A.A. Bugayev, M.C. Gupta, R. Payne, Laser processing of Inconel 600 and surface structure, Opt. and Las. in Eng. 44 (2006) 102-111.

DOI: 10.1016/j.optlaseng.2005.04.014

Google Scholar

[5] T. Akahori, M. Niinomi, H. Fukui, M. Ogawa, H. Toda Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments, Mat. Sci. and Eng. C 25 (2005) 248-254.

DOI: 10.1016/j.msec.2004.12.007

Google Scholar

[6] P. Maruschak, I. Zakiev, V. Mocharsky, Y. Nikiforov, Experimental study of the surface of steel 15Kh13MF after the nanosecond laser shock processing, Solid State Phen. 200 (2013) 60-65.

DOI: 10.4028/www.scientific.net/ssp.200.60

Google Scholar

[7] V.E. Panin, Overview on mesomechanics of plastic deformation and fracture of solids, Theor. and Appl. Fract. Mech. 30 (1998) 1-11.

Google Scholar

[8] A. Zangwill Physics of surface. – Cambridge: Cambridge University Press, (1988).

Google Scholar

[9] J.D. Achenbach, Laser excitation of surface wave motion, J. of the Mech. and Phys. of Solids 51 (2003) 1885-(1902).

Google Scholar

[10] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science, 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar