Morphology Controlling of CaCO3 in 3D Bacterial Cellulose Nanofibres

Article Preview

Abstract:

Hierarchical structure of biomaterials comprised of three dimensional organic matrix and inorganic minerals exhibit unique morphologies and outstanding properties. Herein, modified bacterial cellulose (BC) nanofibres/CaCO3 composites are prepared using the ammonium carbonate diffusion method at room temperature. The copper coinage shaped aragonite has been synthesized in the 3D matrix and investigated by X-ray powder diffraction, Fourier transform infrared spectrometry, and scanning electron microscopy. It can be concluded that the carboxyl modified BC nanofibres can control the mineralization in vivo by physical confinement within the organic structure to allow the growth of non-equilibrium morphology and chemical interaction to influence polymorph selection and oriented nucleation. The system which was to mimic the biomineralization in vivo can help to produce bio-mimetic materials similarly in living creatures.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

296-299

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. C. Bassett; B. Marelli; S. N. Nazhat; J. E. Barralet, Stabilization of Amorphous Calcium Carbonate with Nanofibrillar Biopolymers. Adv. Funct. Mater. 22 (2012) 3460-3469.

DOI: 10.1002/adfm.201103144

Google Scholar

[2] R. A. Metzler; I. W. Kim; K. Delak; J. S. Evans; D. Zhou; E. Beniash; F. Wilt; M. Abrecht; J. -W. Chiou; J. Guo; S. N. Coppersmith; P. U. P. A. Gilbert, Probing the Organic−Mineral Interface at the Molecular Level in Model Biominerals. Langmuir 24 (2008).

DOI: 10.1021/la7031237

Google Scholar

[3] G. Begum; R. K. Rana, Bio-inspired motifs via tandem assembly of polypeptides for mineralization of stable CaCO3 structures. Chem. Commun. 48 (2012) 8216-8218.

DOI: 10.1039/c2cc32756b

Google Scholar

[4] B. L. Smith; T. E. Schaffer; M. Viani; J. B. Thompson; N. A. Frederick; J. Kindt; A. Belcher; G. D. Stucky; D. E. Morse; P. K. Hansma, Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399 (1999).

DOI: 10.1038/21607

Google Scholar

[5] W. Czaja; A. Krystynowicz; S. Bielecki; R. M. Brown Jr, Microbial cellulose—the natural power to heal wounds. Biomaterials 27 (2006) 145-151.

DOI: 10.1016/j.biomaterials.2005.07.035

Google Scholar

[6] H. Sai; L. Xing; J. Xiang; L. Cui; J. Jiao; C. Zhao; Z. Li; F. Li, Flexible aerogels based on an interpenetrating network of bacterial cellulose and silica by a non-supercritical drying process. J. Mater. Chem. A 1 (2013) 7963-7970.

DOI: 10.1039/c3ta11198a

Google Scholar

[7] S. Lofas; B. Johnsson, A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands. J. Chem. Soc., Chem. Commun. 1990, 1526-1528.

DOI: 10.1039/c39900001526

Google Scholar

[8] X. Liang; J. Xiang; F. Zhang; L. Xing; B. Song; S. Chen, Fabrication of Hierarchical CaCO3 Mesoporous Spheres: Particle-Mediated Self-Organization Induced by Biphase Interfaces and SAMs. Langmuir 26 (2009) 5882-5888.

DOI: 10.1021/la9037815

Google Scholar

[9] J. T. Han; X. Xu; D. H. Kim; K. Cho, Mosaic, Single-Crystal CaCO3 Thin Films Fabricated on Modified Polymer Templates. Adv. Funct. Mater. 15 (2005) 475-480.

DOI: 10.1002/adfm.200400037

Google Scholar

[10] S. C. M. Fernandes; P. Sadocco; A. Alonso-Varona; T. Palomares; A. Eceiza; A. J. D. Silvestre; I. Mondragon; C. S. R. Freire, Bioinspired Antimicrobial and Biocompatible Bacterial Cellulose Membranes Obtained by Surface Functionalization with Aminoalkyl Groups. ACS Appl. Mater. Interfaces 5 (2013).

DOI: 10.1021/am400338n

Google Scholar

[11] Z. Chen; C. Li; Q. Yang; Z. Nan, Transformation of novel morphologies and polymorphs of CaCO3 crystals induced by the anionic surfactant SDS. Mater. Chem. Phys. 123 (2010) 534-539.

DOI: 10.1016/j.matchemphys.2010.05.010

Google Scholar