Effect of Heat-Treatment in Ar Atmosphere on Pore Structure of Carbonaceous Materials from Polysiloxane

Article Preview

Abstract:

Nanoporous carbonaceous materials derived from polysiloxane were first prepared by pyrolysis at 1300°C followed with hydrofluoric acid (HF) etching treatment. Their thermal stability of pore structure in inert condition was investigated in this paper by nitrogen adsorption technique in detail. The specific surface area (SSA) and pore volume (total pore volume, micropore volume, mesopore volume) decreased continually in the heat-treatment temperature range of 1000~1400°C. The average pore size almost kept the same with the raw sample. However, when the temperature exceeded 1400°C, the micropore interconnection began transforming to mesopore structure, which led to the decline of SSA and the increase of average pore size. Furthermore, the pore size distributions (PSDs) curves showed that heat-treatment had an advantage on the transition process of pore structure from disorder to regularity to some extent when heat-treated in the range 1000~1400°C for the most possible reason of relief of residue strain in the carbonaceous materials.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

279-284

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.P. Dong, J. Fu, X.X. Xiong, C. Chen, Preparation of hydrophilic mesoporous carbon and its application in dye adsorption, Mater. Lett. 65 (2011) 2486-2488.

DOI: 10.1016/j.matlet.2011.05.014

Google Scholar

[2] W. Xie, H.F. Cheng, Z.Y. Chu, et al., Effect of carbonization temperature on the structure and microwave absorbing properties of hollow carbon fibres, Ceram. Int. 37(6) (2011) 1947-(1951).

DOI: 10.1016/j.ceramint.2011.02.017

Google Scholar

[3] D. Liu, J.H. Lei, L.P. Guo, K.J. Deng, Simple hydrothermal synthesis of ordered mesoporous carbons from resorcinol and hexamine, Carbon. 49 (2011) 2113-2119.

DOI: 10.1016/j.carbon.2011.01.047

Google Scholar

[4] M. Teixeira, M.C. Campo, D.A. Pacheco-Tanaka, et al., Composite phenolic resin-based carbon molecular sieve membranes for gas separation, Carbon. 49 (2011) 4348-4358.

DOI: 10.1016/j.carbon.2011.06.012

Google Scholar

[5] Z.Y. Chu, R.A. He, X.B. Zhang, et al., Fabrication of porous SiC(y) (core)/C (shell) fibres using a hybrid precursor of polycarbosilane and pitch, Carbon. 48(7) (2010) 2115-2118.

DOI: 10.1016/j.carbon.2010.01.064

Google Scholar

[6] D.C. Huang, Q.L. Liu, W. Zhang, et al., Preparation of high-surface-area activated carbon from Zizania latifolia leaves by one-step activation with K2CO3/rarefied air. J. Mater. Sci. 46 (2011) 5064-5070.

DOI: 10.1007/s10853-011-5429-4

Google Scholar

[7] C.F. Chang, C.Y. Chang, Effects of burn-off and activation temperature on preparation of activated carbon from corn cob agrowaste by CO2 and steam, J. colloid. Interface. Sci. 232(1) (2000) 45-49.

DOI: 10.1006/jcis.2000.7171

Google Scholar

[8] V. Presser, M. Heon, Y. Gogotsi, Carbide-derived carbons–from porous networks to nanotubes and graphene, Adv. Funct. Mater. 21 (2011) 810-833.

DOI: 10.1002/adfm.201002094

Google Scholar

[9] C. Vakifahmetoglu, V. Presser, S.H. Yeon, et al., Enhanced hydrogen and methane gas storage of silicon oxycarbide derived carbon, Microporous and Mesoporous Mater. 144 (2011) 105-112.

DOI: 10.1016/j.micromeso.2011.03.042

Google Scholar

[10] P.X. Hou, T. Yamazaki, H. Orikasa, H. Orikasa, T. Kyotani, An easy method for the synthesis of ordered microporous carbons by the template technique, Carbon. 43 (2005) 2618-2641.

DOI: 10.1016/j.carbon.2005.05.001

Google Scholar

[11] J. Gorka, A. Zawislak, J. Choma, M. Jaroniec, Adsorption and structural properties of soft-templated mesoporous carbons obtained by carbonization at different temperatures and KOH activation, Applied. Surface. Sci. 256 (2010) 5187-5190.

DOI: 10.1016/j.apsusc.2009.12.092

Google Scholar

[12] H. Wang, X.D. Li, L.Y. Hong, D.P. Kim, Preparation of phenolic resin derived 3-D ordered macroporous carbon, J. Porous. Mater. 13(2) (2006) 115-121.

DOI: 10.1007/s10934-006-7006-9

Google Scholar

[13] W.H. Zhang, C. Liang, H. Sun, Z. Shen, Y. Guan, Synthesis of ordered mesoporous carbons composed of nanotubes via catalytic chemical vapor deposition, Adv. Mater. 14 (2002) 1776-1778.

DOI: 10.1002/1521-4095(20021203)14:23<1776::aid-adma1776>3.0.co;2-a

Google Scholar

[14] A.H. Lu, W.C. Li, W. Schmidt, F. Schüth, Template synthesis of large pore ordered mesoporous carbon, Microporous and Mesoporous Mater. 80 (2005) 117-128.

DOI: 10.1016/j.micromeso.2004.12.007

Google Scholar

[15] L.Q. Duan, Q.S. Ma, Z.H. Chen, High surface area carbonaceous materials in micro- and mesoporosity from polysiloxane, New Carbon Mater. 28 (3) (2013) 235-240.

DOI: 10.1016/s1872-5805(13)60078-5

Google Scholar

[16] K.S. W Sing, D.H. Everett, R.A. W Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure. Appl. Chem. 57(4) (1985).

DOI: 10.1515/iupac.57.0007

Google Scholar

[17] A. Saha, R. Raj, D.L. Williamson, A Model for the Nanodomains in Polymer-Derived SiCO, J. Am. Ceram. Soc. 89 (2006) 2188-2195.

Google Scholar