AFM Fast Tip Approach Based on Fiber Optic Sensor

Article Preview

Abstract:

As AFM tip approach speed is one of the key factors for AFM industrial on-line detection application, a sectional fast tip approach method composed of rough approach and mild approach processes is introduced here. In rough approach process, AFM tip can be approached by step motor to certain distance upon the sample surface with high speed, as a homemade dual-channel reflective intensity modulated fiber optic displacement sensor (DC-RIMFODS) can be integrated to AFM scan head easily to detect the stop position. While continued with mild approach process after rough approach, step motor can run slowly with a common PI feedback controller for Z scanner to make the tip get in touch with sample surface softly. Experimental results show that with the well-defined fiber optical sensor positioning accuracy and repeatability, the tip-sample distance can be limited in certain range after rough approach with 1mm/s high speed, and the whole AFM tip approach process can be finished in 20s by continuing with mild approach, while the initial tip-sample distance is about 10mm.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

1008-1013

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Steffens, F. L. Leite, C. C. Bueno, A. Manzoli, P. Sergio, and D. P. Herrmann, Atomic force microscopy as a tool applied to nano / biosensors, Sensors, 12, 8278 (2012).

DOI: 10.3390/s120608278

Google Scholar

[2] C. Shin, K. Kim, J. Kim, W. Ko, Y. Yang, S. Lee, and Y. S. Kim, Fast, exact, and non-destructive diagnoses of contact failures in nano-scale semiconductor device using conductive AFM. Sci. Rep. (2013).

DOI: 10.1038/srep02088

Google Scholar

[3] Y. Hua, C. Buenviaje-Coggins, Y. H. Lee and S. I. Park, High-throughput and non-destructive sidewall roughness measurement using 3-dimensional atomic force microscopy, In SPIE Advanced Lithography, 83240I (2012).

DOI: 10.1117/12.918377

Google Scholar

[4] T. Ando, High-speed atomic force microscopy coming of age, Nanotechnology, 23, 06200 (2012).

DOI: 10.1088/0957-4484/23/6/062001

Google Scholar

[5] T. Ando, T. Uchihashi and N. Kodera, High-speed atomic force microscopy, Japanese Journal of Applied Physics, 51, 08KA02 (2012).

DOI: 10.1143/jjap.51.08ka02

Google Scholar

[6] I. M. Paul, R. O. Jason, M. Y. James and R. M. Charles, Method and apparatus for rapid automatic engagement of a probe, US7665349 B2 (2010).

Google Scholar

[7] C. R. Liao, D. N. Wang and Y. Wang, Microfiber in-line Mach-Zehnder interferometer for strain sensing, Optics Letters, 38(5), 757 (2013).

DOI: 10.1364/ol.38.000757

Google Scholar

[8] Bruker Ltd., Dimension fastscan : the world's fastest AFM, http: /www. bruker-axs. com (2011).

Google Scholar

[9] T. Puester, J. Walter, M. Hustedt and V. Wesling, Technical safety measures for the safe use of hand-held laser processing devices, Journal of Laser Applications, 24, 052004 (2012).

DOI: 10.2351/1.4742798

Google Scholar

[10] O. S. van de Ven, R. Yang, S. Xia, J. P. van Schieveen, J. W. Spronck, R. H. M. Schmidt and S. Nihtianov, Autonomous self-aligning and self-calibrating capacitive sensor system, In Autonomous and Intelligent Systems, 10 (2012).

DOI: 10.1007/978-3-642-31368-4_2

Google Scholar

[11] S. Zoriasatain and E. Arzi, A multi-purpose reflective fiber optic sensor, Journal of Modern Optics, 60(10), 781 (2013).

DOI: 10.1080/09500340.2013.813087

Google Scholar

[12] R. Nevshupa, M. Conte and C. van Rijn. Measurement uncertainty of a fibre-optic displacement sensor, Measurement Science and Technology, 24(3), 035104 (2013).

DOI: 10.1088/0957-0233/24/3/035104

Google Scholar

[13] T. M. Libish, M. C. Bobby, J. Linesh, S. Mathew, C. Pradeep, V. P. N. Nampoori and P. Radhakrishnan, Refractive index and temperature dependent displacements of resonant peaks of long period grating inscribed in hydrogen loaded SMF-28 fiber, Optoelectronics Letters, 8(2), 101 (2012).

DOI: 10.1007/s11801-012-1137-9

Google Scholar

[14] S. Zoriasatain and E. Arzi, A multi-purpose reflective fiber optic sensor, Journal of Modern Optics, 60(10), 781 (2013).

DOI: 10.1080/09500340.2013.813087

Google Scholar

[15] L. J. Cui, H. C. Shang, G. Zhang, Y. Li and Z. X. Zhao, Experimental study on optical fiber bundle hydrogen sensor based on palladium-silver optical thin film, Optoelectronics Letters, 9, 13 (2013).

DOI: 10.1007/s11801-013-2301-6

Google Scholar