RF Performances of MEMS Suspended Inductor under High Overload Environments

Article Preview

Abstract:

The radio frequency (RF) performances of MEMS suspended spiral inductor under high overload environments are studied. Firstly, a suspended spiral inductor and its MEMS surface micromachining process which is compatible with CMOS process are developed. Then, the mechanical responses and RF performances of the inductor are simulated by ANSYS and HFSS, respectively. The simulation results show that, as the overload increases, the inductance and quality factor decrease significantly when the frequency band is closed to the resonant frequency but have no significant change when the frequency band is much lower than resonant frequency; the resonant frequency of the suspended inductor decreases monotonically with the increase of overload. A modified lumped parameter model is utilized to illustrate the simulation results, which theoretically indicates that the substrate loss is more severe than the ohmic loss as the overload increases.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

1503-1507

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Ben Yishay, S. Stolyarova, S. Shapira, M. Musiya, D. Kryger, Y. Shiloh and Y. Nemirovsky, A CMOS low noise amplifier with integrated front-side micromachined inductor, J. Microelectron. 42(2011) 754-757.

DOI: 10.1016/j.mejo.2011.01.011

Google Scholar

[2] H. Lakdawala, X. Zhu, H. Luo, S. Santhanam, L. R. Carley and G. K. Fedder, Micromachined high-Q inductors in a 0. 18μm copper interconnect low-K dielectric CMOS process, IEEE J. Solid-State Circuits. 37(2002)394-403.

DOI: 10.1109/4.987092

Google Scholar

[3] X. L. Zhao, X. N. Wang, Y. Zhou and B. C. Cai, Fabrication and performance of double layer suspended spiral inductor, Micronanoelectron. Technol. 42(2005)30-32. (in chinese).

Google Scholar

[4] J. B. Yoon, Y. S. Choi, B. I. Kim, Y. Eo and E. Yoon, CMOS-compatible surface-micromachined suspended-spiral inductors for multi-GHz silicon RF Ics, IEEE Electron Devices Let. 23(2002) 591-593.

DOI: 10.1109/led.2002.803767

Google Scholar

[5] J. De Coster, H. A. C. Tilmans, J. T. M. van Beek, Th. G. S. M. Ryks and R. Puers, The influence of mechanical shock on the operation of electrostatically driven RF-MEMS switches, J. Micromech. Microeng. 14(2004)S49-S50.

DOI: 10.1088/0960-1317/14/9/008

Google Scholar

[6] X. J. He, Y. Wang, Q. Wu and T. L. Gui, The nonlinear dynamic response of microbeam of MEMS capacitive switch under mechanical shock, Analog Integr. Circuits Signal Process. 72(2012) 19-26.

DOI: 10.1007/s10470-011-9815-2

Google Scholar

[7] R. Kuells, S. Nau, M. Salk and K. Thoma, Novel piezoresistive high-g accelerometer geometry with very high sensitivity-bandwidth product, Sens. Actuators, A Phys. 182(2012)41-48.

DOI: 10.1016/j.sna.2012.05.014

Google Scholar

[8] M. I. Ibrahim, M. I. Younis, F. Alsaleem, An investigation into the effects of electrostatic and squeeze-film non-linearities on the shock spectrum of microstructures, Int. J. Non-linear Mech. 45(2010) 756-765.

DOI: 10.1016/j.ijnonlinmec.2010.05.005

Google Scholar

[9] J. Tang, R. Zhao, Y. B. Shi and J. Liu, Failure analysis of the MEMS ultra high measure range accelerometer structure under high impact environment, Chin. J. Sens. Actuators. 25(2012)483-486.

Google Scholar

[10] V. T. Srikar, S. D. Senturia, The reliability of microelectromechanical systems(MEMS) in shock environments, J. Microelectromech. Syst. 11(2002) 206-214.

DOI: 10.1109/jmems.2002.1007399

Google Scholar

[11] Jr-Wei Lin, C. C. Chen, Yu-Ting Cheng, A robust high-Q micromachined RF inductor for RFIC applications, IEEE Trans. Electron Devices. 52(2005) 1489-1496.

DOI: 10.1109/ted.2005.850612

Google Scholar

[12] H. M. Greenhouse, Design of planar rectangular microelectronic inductors, IEEE Trans. Parts Hybrids Packag. 10(1974)101-109.

DOI: 10.1109/tphp.1974.1134841

Google Scholar

[13] H. R. Jiang, Y. Wang, Jer-Liang A. Yeh and N. C. Tien, On-chip spiral inductors suspended over deep copper-lined cavities. IEEE Trans. Microw. Theory Tech. 48(2000)2415-2423.

DOI: 10.1109/22.898992

Google Scholar

[14] C. P. Yue, S. S. Wong, Physical modeling of spiral inductors on silicon, IEEE Trans. Electron Devices. 47(2000) 560-568.

DOI: 10.1109/16.824729

Google Scholar

[15] M. Ozgur, M. E. Zaghloul, M. Gaitan, Optimization of backside micromachined CMOS inductors for RF applications, Proc. IEEE Int Symp. Circuits Syst, Geneva, Switz. 5(2000)185-188.

DOI: 10.1109/iscas.2000.857394

Google Scholar