[1]
R. Ben Yishay, S. Stolyarova, S. Shapira, M. Musiya, D. Kryger, Y. Shiloh and Y. Nemirovsky, A CMOS low noise amplifier with integrated front-side micromachined inductor, J. Microelectron. 42(2011) 754-757.
DOI: 10.1016/j.mejo.2011.01.011
Google Scholar
[2]
H. Lakdawala, X. Zhu, H. Luo, S. Santhanam, L. R. Carley and G. K. Fedder, Micromachined high-Q inductors in a 0. 18μm copper interconnect low-K dielectric CMOS process, IEEE J. Solid-State Circuits. 37(2002)394-403.
DOI: 10.1109/4.987092
Google Scholar
[3]
X. L. Zhao, X. N. Wang, Y. Zhou and B. C. Cai, Fabrication and performance of double layer suspended spiral inductor, Micronanoelectron. Technol. 42(2005)30-32. (in chinese).
Google Scholar
[4]
J. B. Yoon, Y. S. Choi, B. I. Kim, Y. Eo and E. Yoon, CMOS-compatible surface-micromachined suspended-spiral inductors for multi-GHz silicon RF Ics, IEEE Electron Devices Let. 23(2002) 591-593.
DOI: 10.1109/led.2002.803767
Google Scholar
[5]
J. De Coster, H. A. C. Tilmans, J. T. M. van Beek, Th. G. S. M. Ryks and R. Puers, The influence of mechanical shock on the operation of electrostatically driven RF-MEMS switches, J. Micromech. Microeng. 14(2004)S49-S50.
DOI: 10.1088/0960-1317/14/9/008
Google Scholar
[6]
X. J. He, Y. Wang, Q. Wu and T. L. Gui, The nonlinear dynamic response of microbeam of MEMS capacitive switch under mechanical shock, Analog Integr. Circuits Signal Process. 72(2012) 19-26.
DOI: 10.1007/s10470-011-9815-2
Google Scholar
[7]
R. Kuells, S. Nau, M. Salk and K. Thoma, Novel piezoresistive high-g accelerometer geometry with very high sensitivity-bandwidth product, Sens. Actuators, A Phys. 182(2012)41-48.
DOI: 10.1016/j.sna.2012.05.014
Google Scholar
[8]
M. I. Ibrahim, M. I. Younis, F. Alsaleem, An investigation into the effects of electrostatic and squeeze-film non-linearities on the shock spectrum of microstructures, Int. J. Non-linear Mech. 45(2010) 756-765.
DOI: 10.1016/j.ijnonlinmec.2010.05.005
Google Scholar
[9]
J. Tang, R. Zhao, Y. B. Shi and J. Liu, Failure analysis of the MEMS ultra high measure range accelerometer structure under high impact environment, Chin. J. Sens. Actuators. 25(2012)483-486.
Google Scholar
[10]
V. T. Srikar, S. D. Senturia, The reliability of microelectromechanical systems(MEMS) in shock environments, J. Microelectromech. Syst. 11(2002) 206-214.
DOI: 10.1109/jmems.2002.1007399
Google Scholar
[11]
Jr-Wei Lin, C. C. Chen, Yu-Ting Cheng, A robust high-Q micromachined RF inductor for RFIC applications, IEEE Trans. Electron Devices. 52(2005) 1489-1496.
DOI: 10.1109/ted.2005.850612
Google Scholar
[12]
H. M. Greenhouse, Design of planar rectangular microelectronic inductors, IEEE Trans. Parts Hybrids Packag. 10(1974)101-109.
DOI: 10.1109/tphp.1974.1134841
Google Scholar
[13]
H. R. Jiang, Y. Wang, Jer-Liang A. Yeh and N. C. Tien, On-chip spiral inductors suspended over deep copper-lined cavities. IEEE Trans. Microw. Theory Tech. 48(2000)2415-2423.
DOI: 10.1109/22.898992
Google Scholar
[14]
C. P. Yue, S. S. Wong, Physical modeling of spiral inductors on silicon, IEEE Trans. Electron Devices. 47(2000) 560-568.
DOI: 10.1109/16.824729
Google Scholar
[15]
M. Ozgur, M. E. Zaghloul, M. Gaitan, Optimization of backside micromachined CMOS inductors for RF applications, Proc. IEEE Int Symp. Circuits Syst, Geneva, Switz. 5(2000)185-188.
DOI: 10.1109/iscas.2000.857394
Google Scholar