[1]
Skrotzki B. A New Microstructural View of Creep in Near-γ TiAl-Alloys[J]. Key Engineering Materials, 1999, 171: 701-708.
DOI: 10.4028/www.scientific.net/kem.171-174.701
Google Scholar
[2]
Xu J H, Fu Y C, Ge Y F. Experimental Study on High Speed Milling of γ-TiAl Alloy[J]. Key Engineering Materials, 2007, 339: 6-10.
DOI: 10.4028/www.scientific.net/kem.339.6
Google Scholar
[3]
Silva C R M, Henriques V A R. Production of titanium alloys for medical implants by powder metallurgy[J]. Key Engineering Materials, 2001, 189: 443-448.
DOI: 10.4028/www.scientific.net/kem.189-191.443
Google Scholar
[4]
Bhattacharya P, Bellon P, Averback R S, et al. Nanocrystalline TiAl powders synthesized by high-energy ball milling: effects of milling parameters on yield and contamination[J]. Journal of Alloys and Compounds, 2004, 368(1): 187-196.
DOI: 10.1016/j.jallcom.2003.08.079
Google Scholar
[5]
Gebhard S, Pyczak F, Göken M. Microstructural and micromechanical characterisation of TiAl alloys using atomic force microscopy and nanoindentation[J]. Materials Science and Engineering: A, 2009, 523(1): 235-241.
DOI: 10.1016/j.msea.2009.05.068
Google Scholar
[6]
Appel F, Oehring M, Paul J D H. A novel in situ composite structure in TiAl alloys[J]. Materials Science and Engineering: A, 2008, 493(1): 232-236.
DOI: 10.1016/j.msea.2007.08.095
Google Scholar
[7]
Kim Y W. Ordered intermetallic alloys, part III: gamma titanium aluminides[J]. Jom, 1994, 46(7): 30-39.
DOI: 10.1007/bf03220745
Google Scholar
[8]
Kim Y W. Intermetallic alloys based on gamma titanium aluminide[J]. Jom, 1989, 41(7): 24-30.
DOI: 10.1007/bf03220267
Google Scholar
[9]
Wenbin F, Lianxi H, Wenxiong H, et al. Microstructure and properties of a TiAl alloy prepared by mechanical milling and subsequent reactive sintering[J]. Materials Science and Engineering: A, 2005, 403(1): 186-190.
DOI: 10.1016/j.msea.2005.04.049
Google Scholar
[10]
Lu L, Lai M O, Froes F H. The mechanical alloying of titanium aluminides[J]. JOM, 2002, 54(2): 62-64.
DOI: 10.1007/bf02701079
Google Scholar
[11]
Djanarthany S, Viala J C, Bouix J. An overview of monolithic titanium aluminides based on Ti3Al and TiAl[J]. Materials Chemistry and Physics, 2001, 72(3): 301-319.
DOI: 10.1016/s0254-0584(01)00328-5
Google Scholar
[12]
Zhang F, Lu L, Lai M O, et al. Grain growth and recrystallization of nanocrystalline Al3Ti prepared by mechanical alloying[J]. Journal of materials science, 2003, 38(3): 613-619.
Google Scholar
[13]
Suryanarayana C. Mechanical alloying and milling[J]. Progress in materials science, 2001, 46(1): 1-184.
Google Scholar
[14]
Zhang D L. Processing of advanced materials using high-energy mechanical milling[J]. Progress in Materials Science, 2004, 49(3): 537-560.
DOI: 10.1016/s0079-6425(03)00034-3
Google Scholar
[15]
LI X, SUN H, FANG W, et al. Structure and morphology of Ti-Al composite powders treated by mechanical alloying[J]. Transactions of Nonferrous Metals Society of China, 2011, 21: s338-s341.
DOI: 10.1016/s1003-6326(11)61602-6
Google Scholar
[16]
Zhang fu bang, Cheng xue ding, Hao lei et al. Co80Zr20 amorphous alloy powder prepared by mechanical alloying[J]. Powder Metallurgy Technology, 2006, 24(5): 340-344.
Google Scholar