[1]
Li Z, Zhang XW and Han GR. Electrical and optical properties of boron-doped nanocrystalline silicon films deposited by PECVD. Phys. Status Solidi A 2010; 207: 144-148.
DOI: 10.1002/pssa.200925107
Google Scholar
[2]
Kima IK, Limb JH and Yeom GY. Characteristics of hydrogenated silicon thin film deposited by RF-PECVD using He-SiH4 mixture. Vacuum 2011; 86: 82-86.
DOI: 10.1016/j.vacuum.2011.04.018
Google Scholar
[3]
Amrani R, Benlekehal D, Baghdad R, et al. Low-temperature growth of nanocrystalline silicon films prepared by RF magnetron sputtering: Structural and optical studies. J. Non-Cryst. Solids 2008; 354: 2291-2295.
DOI: 10.1016/j.jnoncrysol.2007.10.044
Google Scholar
[4]
Vygranenko Y, Fathi E, Sazonov A, et al. Nanocrystalline p-layer for a-Si: H p-i-n solar cells and photodiodes. Sol. Energy Mater. Sol. Cells 2010; 94: 1860-1863.
DOI: 10.1016/j.solmat.2010.06.044
Google Scholar
[5]
Le Donne A, Binetti S, Isella G, et al. Structural characterization of nc-Si films grown by low-energy PECVD on different substrates. Appl. Surf. Sci. 2008; 254: 2804-2808.
DOI: 10.1016/j.apsusc.2007.10.025
Google Scholar
[6]
Chowdhury A, Mukhopadhyay S and Ray S. Fabrication of low defect density nanocrystalline silicon absorber layer and its application in thin-film solar cell. Thin Solid Films 2008; 516: 6858-6862.
DOI: 10.1016/j.tsf.2007.12.048
Google Scholar
[7]
Guo LQ, Ding JN, Yang JC, et al. Effects of high hydrogen dilution ratio on surface topography and mechanical properties of hydrogenated nanocrystalline silicon thin films. Thin Solid Films 2011; 519: 6039-6043.
DOI: 10.1016/j.tsf.2011.04.117
Google Scholar
[8]
Cheng IC, Allen S and Wagner S. Evolution of nanocrystalline silicon thin film transistor channel layers. J. Non-Cryst. Solids 2004; 338: 720-724.
DOI: 10.1016/j.jnoncrysol.2004.03.076
Google Scholar
[9]
Anutgan TA, Anutgan M, Atilgan I, et al. Large area uniformity of plasma grown hydrogenated nanocrystalline silicon and its application in TFTs. J. Non-Cryst. Solids 2010; 356: 1102-1108.
DOI: 10.1016/j.jnoncrysol.2010.04.012
Google Scholar
[10]
Alpuim P, Andrade M and Sencadas V. Piezoresistive properties of nanocrystalline silicon thin films deposited on plastic substrates by hot-wire chemical vapor deposition. Thin Solid Films 2007; 515: 7658-7661.
DOI: 10.1016/j.tsf.2006.11.138
Google Scholar
[11]
Alpuim P, Marins ES and Rocha PF. Ultra-sensitive shape sensor test structures based on piezoresistive doped nanocrystalline silicon. Vacuum 2009; 83: 1279-1282.
DOI: 10.1016/j.vacuum.2009.03.031
Google Scholar
[12]
He YL, Liu H, Yu MB, et al. The structure characteristics and piezoresistance effect in hydrogenated nanocrystalline silicon films. Nanostructured Materials 1996; 7: 769-777.
DOI: 10.1016/s0965-9773(96)00052-9
Google Scholar
[13]
Son JI, Shim JH and Cho NH. Effect of substrate temperature on the nanostructural and chemical features of nc-Si: H thin films prepared by PECVD. Curr. Appl. Phys. 2010; 10: S365-S368.
DOI: 10.1016/j.cap.2009.12.030
Google Scholar
[14]
Gullanar MH, Zhang YH, Chen H, et al. Effect of phosphorus doping on the structural properties in nc-Si: H thin films. J. Cryst. Growth 2003; 256: 254-260.
DOI: 10.1016/s0022-0248(03)01371-x
Google Scholar
[15]
Luo PQ, Zhou ZB, Li YJ, et al. Effects of deposition pressure on the microstructural and optoelectrical properties of B-doped hydrogenated nanocrystalline silicon (nc-Si : H) thin films grown by hot-wire chemical vapor deposition. Microelectron. J. 2008; 39: 12-19.
DOI: 10.1016/j.mejo.2007.10.019
Google Scholar
[16]
Hu ZH, Liao XB, Diao HW, et al. Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells. J. Non-Cryst. Solids 2006; 352: 1900-(1903).
DOI: 10.1016/j.jnoncrysol.2006.02.010
Google Scholar
[17]
Seto JYW. Piezoresistive properties of polycrystalline silicon. J. Appl. Phys. 1976; 47: 4780-4783.
Google Scholar
[18]
French PJ and Evens AGR. Piezoresistance in polysilicon and its applications to strain gauges. Solid-State Electronics 1989; 32: 1-10.
DOI: 10.1016/0038-1101(89)90041-5
Google Scholar
[19]
Chen XY and Shen WZ. Electron localization and resonant tunneling in uniform nanocrystalline silicon quantum dot systems. Surf. Coat. Technol. 2005; 198: 30-35.
DOI: 10.1016/j.surfcoat.2004.10.057
Google Scholar
[20]
Shi CZ, Liu XW and Chuai RY. Piezoresistive sensitivity, linearity and resistance time drift of polysilicon nanofilms with different depostion temperatures. Sensors 2009; 9: 1141-1166.
DOI: 10.3390/s90201141
Google Scholar
[21]
Ding GQ, Shen WZ and Zheng MJ. Fabrication of highly ordered nanocrystalline Si: H nanodots for the application of nano device arrays. J. Cryst. Growth 2005; 283: 339-345.
DOI: 10.1016/j.jcrysgro.2005.06.052
Google Scholar
[22]
Fraga MA, Furlan H, Massi M, et al. Effect of nitrogen doping on piezoresistive properties of a-SixCy thin film strain gauges. Microsyst. Technol. 2010; 16: 925-930.
DOI: 10.1007/s00542-010-1033-9
Google Scholar