[1]
X. L. Li, H. L. Hu, D. H. Li, Z. X. Shen, Q. H. Xiong, S. Z. Li, and H. J. Fan, Ordered Array of Gold Semishells on TiO2 Spheres: An Ultrasensitive and Recyclable SERS Substrate. ACS Appl. Mater. Interfaces 4 (2012) 2180-2185.
DOI: 10.1021/am300189n
Google Scholar
[2]
K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai and A. Scherer, Surface-plasmon-enhanced light emitters based on InGaN quantum wells, Nat. Mater. 3 (2004) 601-605.
DOI: 10.1038/nmat1198
Google Scholar
[3]
X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, Broadband Enhancement in Thin-Film Amorphous Silicon Solar Cells Enabled by Nucleated Silver Nanoparticles, Nano Lett. 12 (2012) 2187-2192.
DOI: 10.1021/nl203463z
Google Scholar
[4]
G. Z. Shen, Y. Bando, and C. J. Lee, Synthesis and Evolution of Novel Hollow ZnO Urchins by a Simple Thermal Evaporation Process, J. Phys. Chem. B 109 (2005) 10578-10583.
DOI: 10.1021/jp051078a
Google Scholar
[5]
G. S. Hong, C. Li , and L. M. Qi, Facile Fabrication of Two-Dimensionally Ordered Macroporous Silver Thin Films and Their Application in Molecular Sensing, Adv. Funct. Mater. 20 (2010) 3774-3783.
DOI: 10.1002/adfm.201001177
Google Scholar
[6]
Y. L. Hou, H. Kondoh and T. Ohta, Self-Assembly of Co Nanoplatelets into Spheres: Synthesis and Characterization, Chem. Mater. 17 (2005) 3994-3996.
DOI: 10.1021/cm050409t
Google Scholar
[7]
M. Maillard, P. Huang and L. Brus, Silver Nanodisk Growth by Surface Plasmon Enhanced Photoreduction of Adsorbed [Ag+], Nano Lett. 3 (2003) 1611-(1915).
DOI: 10.1021/nl034666d
Google Scholar
[8]
J. Yin, Y. S. Zang, C. Yue, Z. M. Wu, S. T. Wu, J. Li and Z. H. Wu, Ag nanoparticle/ZnO hollow nanosphere arrays: large scale synthesis and surface plasmon resonance effect induced Raman scattering enhancement, J. Mater. Chem. 22 (2012) 7902-7909.
DOI: 10.1039/c2jm16003j
Google Scholar
[9]
Z. W. Cao, D. B. Xiao, L. T. Kang, Z. L. Wang, S. X. Zhang, Y. Ma, H. B. Fu and J. N. Yao, Superhydrophobic pure silver surface with flower-like structures by a facile galvanic exchange reaction with [Ag(NH3)2]OH, Chem. Commun. 23 (2008).
DOI: 10.1039/b803959c
Google Scholar
[10]
C. M. Li, L. E. Urbach, and H. L. Dai, Second-harmonic generation from a Ag (111) surface at the interband transition region: Role of the dielectric function, Phys. Rev. B 49 (1993) 2104-2112.
DOI: 10.1103/physrevb.49.2104
Google Scholar
[11]
B. Balamurugana and T. Maruyama, Size-modified d bands and associated interband absorption of Ag nanoparticles, J. Appl. Phys. 102 (2007) 034306-1-5.
DOI: 10.1063/1.2767837
Google Scholar
[12]
J. Lian, L. M. Wang, X. C. Sun, Q. K. Yu, and R. C. Ewing, Patterning Metallic Nanostructures by Ion-Beam-Induced Dewetting and Rayleigh Instability, Nano Lett. 6 (2006) 1047-1052.
DOI: 10.1021/nl060492z
Google Scholar
[13]
H. Watanabe, N. Hayazawa, Y. Inouye and S. Kawata, DFT Vibrational Calculations of Rhodamine 6G Adsorbed on Silver: Analysis of Tip-Enhanced Raman Spectroscopy, J. Phys. Chem. B 109 (2005) 5012-5020.
DOI: 10.1021/jp045771u
Google Scholar
[14]
J. K. Park, J. K. Yoon and K. Kim, Novel Fabrication of Ag Thin Film on Glass for Efficient Surface-Enhanced Raman Scattering, Langmuir, 22 (2006) 1626-1629.
DOI: 10.1021/la052559o
Google Scholar
[15]
R. P. Van Duyne, J. C. Hulteen and D. A. Treichel, Atomic force microscopy and surface‐enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass, J. Chem. Phys. 99 (1993) 2101-2115.
DOI: 10.1063/1.465276
Google Scholar