[1]
S. Olovsjö, P. Hammersberg, P. Avdovic, J. -E. Ståhl, L. Nyborg, Methodology for evaluating effects of material characteristics on machinability—theory and statistics-based modelling applied on Alloy 718, Int. J. Adv. Manuf. Technol. 59 (2011).
DOI: 10.1007/s00170-011-3503-3
Google Scholar
[2]
E.O. Ezugwu, Z. Wang, Titanium alloys and their machinability—a review, J. Mater. Process. Technol. (1997).
Google Scholar
[3]
S.K. K Uehara, Chip formation, surface roughness and cutting force in cryogenic machining, Ann. CIRP. 17(1) (1968) 409–416.
Google Scholar
[4]
Y. Yildiz, M. Nalbant, A review of cryogenic cooling in machining processes, Int. J. Mach. Tools Manuf. 48 (2008) 947–964.
DOI: 10.1016/j.ijmachtools.2008.01.008
Google Scholar
[5]
S.Y. Hong, Y. Ding, Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V, Int. J. Mach. Tools Manuf. 41 (2001) 1417–1437.
DOI: 10.1016/s0890-6955(01)00026-8
Google Scholar
[6]
M.J. Bermingham, S. Palanisamy, D. Kent, M.S. Dargusch, A comparison of cryogenic and high pressure emulsion cooling technologies on tool life and chip morphology in Ti–6Al–4V cutting, J. Mater. Process. Technol. 212 (2012) 752–765.
DOI: 10.1016/j.jmatprotec.2011.10.027
Google Scholar
[7]
M.J. Bermingham, J. Kirsch, S. Sun, S. Palanisamy, M.S. Dargusch, New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V, Int. J. Mach. Tools Manuf. 51 (2011) 500–511.
DOI: 10.1016/j.ijmachtools.2011.02.009
Google Scholar
[8]
S. Hong, M. Broomer, Economical and ecological cryogenic machining of AISI 304 austenitic stainless steel, Clean Prod. Process. 2 (2000) 0157–0166.
DOI: 10.1007/s100980000073
Google Scholar
[9]
F. Pusavec, J. Kopac, Achieving and implementation of sustainability principles in machining processes, Adv. Prod. Eng. Manag. 4 (2009) 151–160.
Google Scholar
[10]
K.V.B.S. Kalyan Kumar, S.K. Choudhury, Investigation of tool wear and cutting force in cryogenic machining using design of experiments, J. Mater. Process. Technol. 203 (2008) 95–101.
DOI: 10.1016/j.jmatprotec.2007.10.036
Google Scholar
[11]
K.A. Venugopal, S. Paul, A.B. Chattopadhyay, Growth of tool wear in turning of Ti-6Al-4V alloy under cryogenic cooling, Wear. 262 (2007) 1071–1078.
DOI: 10.1016/j.wear.2006.11.010
Google Scholar
[12]
S.Y. Hong, Y. Ding, W. Jeong, Friction and cutting forces in cryogenic machining of Ti–6Al–4V, Int. J. Mach. Tools Manuf. 41 (2001) 2271–2285.
DOI: 10.1016/s0890-6955(01)00029-3
Google Scholar
[13]
V.C. Venkatesh, M.I. Ahmed, A.F. Ismail, Y.A. Abakr, A.K.M.N. Amin, Effectiveness of cryogenic machining with modified tool holder, J. Mater. Process. Technol. 185 (2007) 91–96.
DOI: 10.1016/j.jmatprotec.2006.03.123
Google Scholar
[14]
K.A. Venugopal, R. Tawade, P.G. Prashanth, S. Paul, A.B. Chattopadhyay, Turning of titanium alloy with TiB2-coated carbides under cryogenic cooling, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 217 (2003) 1697–1707.
DOI: 10.1243/095440503772680622
Google Scholar
[15]
Z.Y. Wang, K.P. Rajurkar, Cryogenic machining of hard-to-cut materials, Wear. 239 (2000) 168–175.
DOI: 10.1016/s0043-1648(99)00361-0
Google Scholar
[16]
M. Dhananchezian, M.P. Kumar, Cryogenic turning of the Ti–6Al–4V alloy with modified cutting tool inserts, Cryogenics (Guildf). 51 (2011) 34–40.
DOI: 10.1016/j.cryogenics.2010.10.011
Google Scholar
[17]
S. Sun, M. Brandt, M.S. Dargusch, Machining Ti–6Al–4V alloy with cryogenic compressed air cooling, Int. J. Mach. Tools Manuf. 50 (2010) 933–942.
DOI: 10.1016/j.ijmachtools.2010.08.003
Google Scholar
[18]
S. -C. Jun, Lubrication effect of liquid nitrogen in cryogenic machining friction on the tool-chip interface, J. Mech. Sci. Technol. 19 (2005) 936–946.
DOI: 10.1007/bf02919176
Google Scholar
[19]
Y. Ke, H. Dong, G. Liu, M. Zhang, Use of nitrogen gas in high-speed milling of Ti-6Al-4V, Trans. Nonferrous Met. Soc. China. 19 (2009) 530–534.
DOI: 10.1016/s1003-6326(08)60307-6
Google Scholar
[20]
G. Rotella, O.W. Dillon, D. Umbrello, L. Settineri, I.S. Jawahir, The effects of cooling conditions on surface integrity in machining of Ti6Al4V alloy, Int. J. Adv. Manuf. Technol. (2013).
DOI: 10.1007/s00170-013-5477-9
Google Scholar
[21]
M.J. Bermingham, S. Palanisamy, M.S. Dargusch, Understanding the tool wear mechanism during thermally assisted machining Ti-6Al-4V, Int. J. Mach. Tools Manuf. 62 (2012) 76–87.
DOI: 10.1016/j.ijmachtools.2012.07.001
Google Scholar
[22]
N. Khanna, K.S. Sangwan, Comparative machinability study on Ti54M titanium alloy in different heat treatment conditions, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 227 (2012) 96–101.
DOI: 10.1177/0954405412466234
Google Scholar
[23]
R.A. Rahman Rashid, S. Sun, G. Wang, M.S. Dargusch, Machinability of a near beta titanium alloy, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 225 (2011) 2151–2162.
DOI: 10.1177/2041297511406649
Google Scholar
[24]
D.C. Montgomery, Design and analysis of experiments, 5th ed., New York, (2001).
Google Scholar
[25]
M. Santochi, F. Giusti, Tecnologia meccanica e studi di fabbricazione, (2000).
Google Scholar
[26]
S. Hong, I. Markus, W. Jeong, New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V, Int. J. Mach. Tools Manuf. 41 (2001) 2245–2260.
DOI: 10.1016/s0890-6955(01)00041-4
Google Scholar