[1]
L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K. N. Amato, P. W. Shindo, F. R. Medina, R. B. Wicker, Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies, Journal of Materials Science & Technology 28/1 (2012).
DOI: 10.1016/s1005-0302(12)60016-4
Google Scholar
[2]
J. Karlsson, A. Snis, H. Engqvist, J. Lausmaa, Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti–6Al–4V powder fractions, Journal of Materials Processing Technology 213/12 (2013) 2109-2118.
DOI: 10.1016/j.jmatprotec.2013.06.010
Google Scholar
[3]
Q. Jia, D. Gu, Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties, Journal of Alloys and Compounds 585/5 (2014) 713-721.
DOI: 10.1016/j.jallcom.2013.09.171
Google Scholar
[4]
L. Facchini, E. Magalini, P. Robotti, A. Molinari, Microstructure and mechanical properties of Ti-6Al-4V produced by Electron Beam Melting of pre-alloyed powders, Rapid Prototyping J. 15/3 (2009) 171.
DOI: 10.1108/13552540910960262
Google Scholar
[5]
P.C. Priarone, S. Rizzuti , L. Settineri, G. Vergnano, Effects of cutting angle, edge preparation, and nano-structured coating on milling performance of a gamma titanium aluminide, Journal of Materials Processing Technology 212 (2012) 2619 – 2628.
DOI: 10.1016/j.jmatprotec.2012.07.021
Google Scholar
[6]
D.A. Axinte, P. Andrews, W. Li, N. Gindy, P.J. Withers, T.H.C. Childs, Turning of advanced Ni based alloys obtained via powder metallurgy route, CIRP Annals - Manufacturing Technology 55 /1 (2006) 117-120.
DOI: 10.1016/s0007-8506(07)60379-5
Google Scholar
[7]
J. Sun, Y.B. Guo, A comprehensive experimental study on surface integrity by end milling Ti-6Al-4V, Journal of Materials Processing Technology (2009) 209 4036–4042.
DOI: 10.1016/j.jmatprotec.2008.09.022
Google Scholar
[8]
D. Ulutan, T. Ozel, Machining induced surface integrity in titanium and nickel alloys: A review, International Journal of Machine Tools & Manufacture 51 (2011) 250–280.
DOI: 10.1016/j.ijmachtools.2010.11.003
Google Scholar
[9]
ISO 3685, Tool life testing with single-point turning tools, (1993).
Google Scholar
[10]
S.K. Bhaumik, C. Divakar , A.K. Singh, Machining Ti–6Al–4V alloy with a WBN-CBN composite tool, Materials and Design 16, 221–226.
DOI: 10.1016/0261-3069(95)00044-5
Google Scholar
[11]
R.B. da Silva, Á.R. Machadoa, E.O. Ezugwu, J. Bonney, W.F. Sales, Tool life and wear mechanisms in high speed machining of Ti–6Al–4V alloy with PCD tools under various coolant pressures, Journal of Materials Processing Technology 213 (2013).
DOI: 10.1016/j.jmatprotec.2013.03.008
Google Scholar
[12]
H.A. Kishway , M.A. Elbestawi, Effects of process parameters on material side flow during hard turning, International Journal of Machine Tools and Manufacture 39/7 1017–1030.
DOI: 10.1016/s0890-6955(98)00084-4
Google Scholar
[13]
P.J. Arrazola, T. Özel, D. Umbrello, M. Davies, I.S. Jawahir, Recent advances in modelling of metal machining processes, CIRP Annals - Manufacturing Technology 62/ 2 (2013) 695-718.
DOI: 10.1016/j.cirp.2013.05.006
Google Scholar
[14]
J. Peirs, W. Tirry, B. Amin-Ahmadi, F. Coghe, P. Verleysen, L. Rabet, D. Schryvers, J. Degrieck, Microstructure of adiabatic shear bands in Ti6Al4V, Materials Characterization 75 (2013) 79-92.
DOI: 10.1016/j.matchar.2012.10.009
Google Scholar
[15]
J. Barry, G. Byrne., D. Lennon , Observations on chip formation and acoustic emission in machining Ti–6Al–4V alloy, International Journal of Machine Tools and Manufacture 2001 41 1055–1070.
DOI: 10.1016/s0890-6955(00)00096-1
Google Scholar
[16]
C.H. Che-Haron, A. Jawaid, The effect of machining on surface integrity of titanium, Journal of Materials Processing Technology 166 (2005) 188–192.
DOI: 10.1016/j.jmatprotec.2004.08.012
Google Scholar