[1]
J. Brocail, M. Watremez, L. Dubar, «Identification of a friction model for modelling of orthogonal cutting, » International Journal of Machine Tools & Manufacture, pp.807-814, (2010).
DOI: 10.1016/j.ijmachtools.2010.05.003
Google Scholar
[2]
D. Meresse, M. Watremez, M. Siroux, L. Dubar et S. Harmand, «Friction and wear mechanisms study on a newly developed High Speed Tribometer, » AIP Conference Proceedings, vol. 1353, pp.1759-1764, (2011).
DOI: 10.1063/1.3589770
Google Scholar
[3]
N. Fang, «Slip-line modeling of machining with a rounded-edge tool - part II: analysis of the size effect and the shear strain-rate, » Journal of the Mechanics and Physics of Solids, vol. 51, pp.743-762, (2003).
DOI: 10.1016/s0022-5096(02)00061-3
Google Scholar
[4]
K. Ee, O. Dillon Jr. et I. Jawahir, «Finite element modelling of residual stresses in machining induced by cutting using a tool with finite edge radius, » International Journal of Mechanical Sciences, vol. 47, pp.1611-1628, (2005).
DOI: 10.1016/j.ijmecsci.2005.06.001
Google Scholar
[5]
T. Özel et E. Zeren, «A methodology to determine work material flow stress and tool-chip interfacial friction properties by using analysis of machining, » Journal of Manufacturing Science and Engineering, vol. 128, pp.119-129, (2006).
DOI: 10.1115/1.2118767
Google Scholar
[6]
C. Bonnet, F. Valiorgue, J. Rech, C. Claudin, H. Hamdi, J. Bergheau et P. Gilles, «Identification of a friction model - Application to the context of dry cutting of an AISI 316L austenitic stainless steel with a TiN coated carbide tool, » International Journal of Machine Tools and Manufacture, Vol 48, pp.1211-1223, (2008).
DOI: 10.1016/j.ijmachtools.2008.03.011
Google Scholar
[7]
F. Zemzemi, J. Rech, W. Ben Salem, A. Dogui et P. Kapsa, «Identification of a friction model at tool/chip/workpiece interfaces in dry machining of AISI4142 treated steels, » Journal of Materials Processing Technology, vol. 209, pp.3978-3990, (2009).
DOI: 10.1016/j.jmatprotec.2008.09.019
Google Scholar
[8]
J. Rech, C. Claudin, E. D'Eramo, Identification of a friction model - Application to the context of dry cutting of an AISI 1045 annealed steel with a TiN-coated carbide tool, Tribology International 42, pp.738-744, (2009).
DOI: 10.1016/j.triboint.2008.10.007
Google Scholar
[9]
H. Ben Abdelali, C. Claudin, J. Rech, W. Ben Salem, P. Kapsa et A. Dogui, «Experimental characterization of friction coefficient at the tool-chip-workpiece interface during dry cutting of AISI1045, » Wear, 286-287, pp.108-115, (2012).
DOI: 10.1016/j.wear.2011.05.030
Google Scholar
[10]
M. Watremez, D. Meresse, L. Dubar et J. Brocail, «Finite element modelling of orthogonal cutting: sensitivity analysis of material and contact parameters, » International Journal of Simulation and Process Modelling, vol. 7, pp.262-274, (2012).
DOI: 10.1504/ijspm.2012.049820
Google Scholar
[11]
S. Jaspers et J. Dautzenberg, «material behaviour in conditions similar to metal cutting: flow stress in the primary shear zone, » Journal of Materials Processing Technology, vol. 122, pp.322-330, (2002).
DOI: 10.1016/s0924-0136(01)01228-6
Google Scholar
[12]
P. Rosakis, A. Rosakis, G. Ravichandran et J. Hodowany, «A thermodynamic internal variable model for the partition of plastic work into heat and stored energy metals, » Journal of the Mechanics and the Physics of Solids, vol 15, pp.581-607, (2000).
DOI: 10.1016/s0022-5096(99)00048-4
Google Scholar
[13]
V. Kalhori, «Modeling and simulation of mechanical cutting, » PhD thesis, University of Lunea Tekniska, (2001).
Google Scholar
[14]
W. Grzesik et P. Nieslony, «Physics based on modelling of interface temperatures in machining with multiplayer coated tools at moderate cutting speeds, » International Journal of Machine Tools & Manufacture, vol 44, pp.889-901, (2004).
DOI: 10.1016/j.ijmachtools.2004.02.014
Google Scholar