The Influence of Equivalent Contact Area Computation in Extended Node to Surface Contact Elements

Article Preview

Abstract:

This article aims at extending the node to surface formulation for contact problems withan area regularization as proposed by [1]. For that purpose, two methods are proposed to computethe equivalent contact area attributed to each slave node. The first method, which is based on a geo-metrical approach through force equivalence, is an original extension of the one proposed in [1] fortwo-dimensional contact problems, i.e. plane stress and plane strain state, to the axisymmetric mod-elling context. The second method relies on an energy consistent way obtained through the virtualwork principle and the same expression for the equivalent contact area as the one originally cited in[2] is then recovered. First, the node to surface strategy with area regularization is introduced and theaforementioned methods for the equivalent contact area are presented in detail and compared. After-wards a consistent linearization technique is applied to achieve a quadratic convergence rate in theNewton Raphson iterative procedure used to solve the non-linear equilibrium equations of the under-lying finite element model. Finally, two axisymmetric numerical examples are provided in order tocompare the aforementioned equivalent contact area evaluations and to demonstrate the performanceand the robustness of the consistent approach especially in the neighbourhood the revolution axis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-22

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Zavarise and L. De Lorenzis: International Journal for Numerical Methods in Engineering Vol. 79(4) (2009), pp.379-416.

Google Scholar

[2] S. Stupkiewicz: International Journal for Numerical Methods in Engineering Vol. 50(3) (2001), pp.739-759.

Google Scholar

[3] T. A. Laursen: Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis (Springer-Verlag, Berlin Heidelberg 2002).

Google Scholar

[4] P. Wriggers: Computational Contact Mechanics (Springer-Verlag, Berlin Heidelberg 2006).

Google Scholar

[5] Z.-H. Zhong: Finite Element Procedures for Contact-Impact Problems (Oxford University Press, New York 1993).

Google Scholar

[6] G. Zavarise, P. Wriggers, E. Stein and B. A. Schrefler: International Journal for Numerical Methods in Engineering Vol. 35(4) (1992), pp.767-785.

Google Scholar

[7] B. A. Schrefler and G. Zavarise: Computer-Aided Civil and Infrastructure Engineering Vol. 8(4) (1993), pp.299-308.

Google Scholar

[8] G. Zavarise, M. Borri-Brunetto and M. Paggi: Wear Vol. 257(3-4) (2004), pp.229-245.

DOI: 10.1016/j.wear.2003.12.010

Google Scholar

[9] L. Anand: Computational Mechanics Vol. 12(4) (1993), pp.197-213.

Google Scholar

[10] S. Stupkiewicz and Z. Mróz: Wear Vol. 231(1) (1999), pp.124-138.

Google Scholar

[11] F. B. Belgacem, P. Hild and P. Laborde: Mathematical and Computer Modelling Vol. 28(4-8) (1998), pp.263-271.

Google Scholar

[12] M. A. Puso and T. A. Laursen: Computer Methods in Applied Mechanics and Engineering Vol. 193(6-8) (2004), pp.601-629.

Google Scholar

[13] A. Popp, M. W. Gee and W. A. Wall: International Journal for Numerical Methods in Engineering Vol. 79(11) (2009), pp.1354-1391.

Google Scholar

[14] P. Papadopoulos and R. L. Taylor: Computer Methods in Applied Mechanics and Engineering Vol. 94(3) (1992), pp.373-389.

Google Scholar

[15] P. Papadopoulos and R. L. Taylor: Computers & Structures Vol. 46(6) (1993), pp.1107-1118.[16] G. Zavarise and P. Wriggers: Mathematical and Computer Modelling Vol. 28(4-8) (1998), pp.497-515.

Google Scholar

[17] R. L. Taylor and P. Papadopoulos, in: Nonlinear Computational Mechanics, edited by P. Wriggers and W. Wagner, Springer-Verlag, Berlin (1991), pp.690-702.

Google Scholar

[18] Information on http://metafor.ltas.ulg.ac.be.

Google Scholar

[19] D.-T. Nguyen, G. Rauchs and J.-P. Ponthot: Journal of Computational and Applied Mathematics Vol. 246(0) (2013), pp.195-205.

Google Scholar

[20] J. C. Simo, P. Wriggers, and R. L. Taylor: Computer Methods in Applied Mechanics and Engineering Vol. 50(2) (1985), pp.163-180.

Google Scholar

[21] G. Zavarise and L. De Lorenzis, in: Trends in Computational Contact Mechanics, edited by G. Zavarise and P. Wriggers, volume 58 of Lecture Notes in Applied and Computational Mechanics, Springer-Verlag, Berlin Heidelberg (2011), pp.79-100.

DOI: 10.1007/978-3-642-22167-5

Google Scholar

[22] K. J. Bathe: Finite Element Procedures (Prentice-Hall, New Jersey 1996).

Google Scholar

[23] P. Wriggers: Nonlinear Finite Element Methods (Springer-Verlag, Berlin Heidelberg 2008).

Google Scholar

[24] T. Belytschko, B. Moran and W. K. Liu: Nonlinear Finite Elements for Continua and Structures (John Wiley & Sons, England 2000).

Google Scholar

[25] J.-P. Ponthot: PhD thesis, University of Liège (1995).

Google Scholar

[26] R. W. Ogden : Non-Linear Elastic Deformations (Dover Publications, New York 1997).

Google Scholar

[27] G. Zavarise, L. De Lorenzis and R. L. Taylor: Computer Methods in Applied Mechanics and Engineering Vol. 205-208 (2012), pp.91-109.

DOI: 10.1016/j.cma.2011.02.018

Google Scholar

[28] S. Timoshenko and J. N. Goodier: Theory of Elasticity (McGraw-Hill Book Company, New York 1951).

Google Scholar

[29] K. Johnson: Contact Mechanics (Cambridge University Press, Cambridge 1987).

Google Scholar