Effect of Friction on the Size of the Near-Tip Contact Zone in a Penny-Shaped Interface Crack

Article Preview

Abstract:

Relations between different solutions of an interface crack in a neighborhood of the crack tip given by the open model, frictionless and frictional contact models of interface cracks are analyzed numerically for a penny-shaped interface crack subjected to remote tension. A new analytic expression for the size of the near-tip contact zone in presence of Coulomb friction between crack faces is proposed in the so-called case of the contact zone field embedded in the oscillatory field.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

179-201

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.L. Williams. The stress around a fault or crack in dissimilar media. Bull. Seismol. Soc. Am. 49 (1959) 199–204.

Google Scholar

[2] A.H. England. A crack between dissimilar media. J. Appl. Mech. 32 (1965) 400-402.

Google Scholar

[3] F. Erdogan. Stress distribution in bonded dissimilar materials with cracks. J. Appl. Mech. 32 (1965) 403-410.

DOI: 10.1115/1.3625814

Google Scholar

[4] J.R. Rice, G.C. Sih. The bending of plates of dissimilar materials with cracks. J. Appl. Mech. 31 (1964) 477-483.

Google Scholar

[5] B.M. Malyshev, R.L. Salganik. The strength of adhesive joints using the theory of fracture. Int. J. Fract. Mech. 1 (1965) 114-128.

DOI: 10.1007/bf00186749

Google Scholar

[6] J.R. Rice. Elastic fracture mechanics concepts for interfacial cracks. J. Appl. Mech. 55 (1988) 98-103.

DOI: 10.1115/1.3173668

Google Scholar

[7] J.W. Hutchinson, Z. Suo. Mixed mode cracking in layered materials. Adv. Appl. Mech. 29 (1992) 63–191.

Google Scholar

[8] M. Comninou. The interface crack. J. Appl. Mech. 44 (1977) 631-636.

Google Scholar

[9] M. Comninou, Interface crack with friction in the contact zone, J. Appl. Mech. 44 (1977) 780-781.

DOI: 10.1115/1.3424179

Google Scholar

[10] M. Comninou, D. Schmuesser. The interface crack in a combined tension-compression and shear field. J. Appl. Mech. 46 (1979) 345-348.

DOI: 10.1115/1.3424553

Google Scholar

[11] A.K. Gautesen. J. Dundurs. The interface crack in a tension field. J. Appl. Mech. 54 (1987) 93-98.

DOI: 10.1115/1.3173001

Google Scholar

[12] A.K. Gautesen, J. Dundurs. The interface crack under combined loading. J. Appl. Mech. 55 (1988) 580-586.

DOI: 10.1115/1.3125833

Google Scholar

[13] X. Deng. On stationary and moving interface cracks with frictionless contact in anisotropic biomaterials. Proceedings R. Soc. Lond. A, 443 (1993) 563–572.

DOI: 10.1098/rspa.1993.0162

Google Scholar

[14] X. Deng. An asymptotic analysis of stationary and moving cracks with frictional contact along bimaterial interfaces and in homogeneous solids, Int. J. Solids Struct. 31 (1994) 2407–2429.

DOI: 10.1016/0020-7683(94)90160-0

Google Scholar

[15] J. Lee, and H. Gao, A generalized Comninou contact model for interface cracks in anisotropic elastic solids. Int. J. Fracture 67 (1994) 53-68.

DOI: 10.1007/bf00032364

Google Scholar

[16] B. Audoly. Asymptotic study of the interfacial crack with friction. J. Mech. Phys. Solids. 48 (2000) 1851-1864.

Google Scholar

[17] H.D. Bui, A. Oueslati. The sliding interface crack with friction between elastic and rigid bodies, J. Mech. Phys. Solids 53 (2005) 1397–1421.

DOI: 10.1016/j.jmps.2004.12.007

Google Scholar

[18] D.A. Hills, P.A. Kelly, D.N. Dai, A.M. Korsunsky, Solutions of Crack Problems. The Distributed Dislocation Technique, Kluwer Academic Publishers, Dordrecht, 1996.

Google Scholar

[19] V. Mantič, A. Blázquez, E. Correa, F. París. Analysis of interface cracks with contact in composites by 2D BEM. In: Fracture and Damage of Composites, M. Guagliano, M.H. Aliabadi (Eds.), Wessex Institute of Technology Press, 2006, pp.189-248.

DOI: 10.2495/978-1-85312-669-7/08

Google Scholar

[20] D.A. Hills, J.R. Barber. Interface cracks. Int. J. Mech. Sci. 35 (1993) 27-37.

Google Scholar

[21] C. Atkinson. The interface crack with a contact zone (an analytical treatment). Int. J. Fracture 18 (1982) 161-177.

DOI: 10.1007/bf00032272

Google Scholar

[22] E. Graciani, V. Mantič, F. París. On the estimation of the first interpenetration point in the open model of interface cracks. Int. J. Fracture 143 (2007) 287-90.

DOI: 10.1007/s10704-007-9066-5

Google Scholar

[23] E. Graciani, V. Mantič, F. París. Critical study of existing solutions for a penny-shaped interface crack, comparing with a new boundary element solution allowing for frictionless contact. Eng. Fract. Mech. 76 (2009) 533-47.

DOI: 10.1016/j.engfracmech.2008.11.007

Google Scholar

[24] E. Graciani, V. Mantič, F. París. A BEM analysis of a penny-shaped interface crack using the open and the frictionless contact models: Range of validity of various asymptotic solutions. Eng. Anal. Boun. Elem. 34 (2010) 66-78.

DOI: 10.1016/j.enganabound.2009.06.006

Google Scholar

[25] A.R. Zak. Stresses in the vicinity of boundary discontinuities in bodies of revolution. J. Appl. Mech. 31 (1964) 150-152.

DOI: 10.1115/1.3629542

Google Scholar

[26] J. Dundurs. Discussion on a paper by Bogy DB. J. Appl. Mech. 36 (1969) 650-652.

Google Scholar

[27] M.K. Kassir, A.M. Bregman. The stress-intensity factor for a penny-shaped crack between two dissimilar materials. J. Appl. Mech. 39(1972) 308-10.

DOI: 10.1115/1.3422648

Google Scholar

[28] E. Graciani, V. Mantič, F. París, A. Blázquez. Weak formulation of axi-symmetric frictionless contact problems with Boundary Elements. Application to interface cracks. Comput. Struc. 83 (2005) 836-855.

DOI: 10.1016/j.compstruc.2004.09.011

Google Scholar

[29] A. Blázquez, F. París, V. Mantič. BEM solution of two dimensional contact problems by weak application of contact conditions with non-conforming discretizations. Int. J. Solids. Struct. 35 (1998) 3259-78.

DOI: 10.1016/s0020-7683(98)00016-x

Google Scholar

[30] F.París, J. Cañas. Boundary element method: fundamentals and applications, Oxford University Press, Oxford, 1997.

Google Scholar

[31] Y. Ju Ahn, J.R. Barber. Response of frictional receding contact problems to cyclic loading, Int. J. Mech. Sci. 50 (2008) 1519-1525.

DOI: 10.1016/j.ijmecsci.2008.08.003

Google Scholar