Closed-Form Solution of the Frictional Sliding Contact Problem for an Orthotropic Elastic Half-Plane Indented by a Wedge-Shaped Punch

Article Preview

Abstract:

In this paper, the frictional contact problem of a homogeneous orthotropic material in contact with a wedge-shaped punch is considered. Materials can behave anisotropically depending on the nature of the processing techniques; hence it is necessary to develop an efficient method to solve the contact problems for orthotropic materials. The aim of this work is to develop a solution method for the contact mechanics problems arising from a rigid wedge-shaped punch sliding over a homogeneous orthotropic half-plane. In the formulation of the plane contact problem, it is assumed that the principal axes of orthotropy are parallel and perpendicular to the contact. Four independent engineering constants , , , are replaced by a stiffness parameter, , a stiffness ratio, a shear parameter, , and an effective Poisson’s ratio, . The corresponding mixed boundary problem is reduced to a singular integral equation using Fourier transform and solved analytically. In the parametric analysis, the effects of the material orthotropy parameters and the coefficient of friction on the contact stress distributions are investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

203-225

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Baroumes, E. Bouillon, F. Christin: An improved long life duration ceramic matrix composite material for jet aircraft engine applications, 24th International Congress of the Aeronautical Sciences, (2004).

Google Scholar

[2] H. Esfandiar, S. Daneshmand, M. Mondali: Int. J. Advanced Design and Manufacturing Technology, Vol. 5/ No. 1, (2011).

Google Scholar

[3] S. Itou: International Journal of Fracture, Volume 103 Issue 3 (2000), pp.279-291.

Google Scholar

[4] W. Thompson, (Lord Kelvin): Cambridge and Dublin Math. J., 3, (1848), p.87–89.

Google Scholar

[5] G. Green: An essay on the application of mathematical analysis to the theories of electricity and magnetism, (Nottingham, England: T. Wheelhouse, (1828), pp.10-12.

Google Scholar

[6] G. Lamé: Leçons sur la théorie mathématique de l'élasticité des corps solides, (1852).

Google Scholar

[7] J. Boussinesq: Application des potentiels a l'e´tude de l'e´quilibre et du mouvement des solides e´lastiques, Gauthier-Villars, (1885).

Google Scholar

[8] H. Hertz: J. Reine Angew. Math. 92, (1882) p.156–171 (in German).

Google Scholar

[9] V. Cerruti, In: A.E.H. Love (ed.), A Treatise on the mathematical theory of elasticity, fourth ed., Dover Publications, New York, (1882).

Google Scholar

[10] R.V. Southwell: Phil. Mag., Ser. 7,1, (1926) p.71.

Google Scholar

[11] R.D. Mindlin: Journal of Applied Physics 79, (1936) p.195–202.

Google Scholar

[12] J.R. Barber and M. Ciavarella: International Journal of Solids and Structures, Vol.37, (2000), pp.29-43.

Google Scholar

[13] N.L. Muskhelishvili: Singular integral equations, P. Noordhoff Ltd., Groningen, The Netherlands, 1953. (based on the second Russian edition published in 1946).

Google Scholar

[14] A.H. England: Complex variable methods in elasticity, Wiley Interscience, London, 1971.

Google Scholar

[15] K.L. Johnson: Contact Mechanics, Cambridge University Press, 1987.

Google Scholar

[16] F. Erdoga:, Mixed boundary value problems in mechanics in: Nemat-Nasser, S. (ed.), Mechanics Today 4. Pergamon Press, (1978) p.1–86.

Google Scholar

[17] F. Erdogan: SIAM J. Appl. Math. 17, (1969), p.1041–59.

Google Scholar

[18] A. Stroh: Philos. Mag., 3(30), (1958) p.625–646.

Google Scholar

[19] A. Stroh: J. Math. Phys., 41(2), (1962), p.77–103.

Google Scholar

[20] S.G. Lekhnitskii, Theory of elasticity of an anisotropic elastic body, Holden-Day, San Francisco 1963.

Google Scholar

[21] V.A. Sveklo: J. Appl. Math. Mech. 28, (1964) p.1099–1105.

Google Scholar

[22] J.R. Willis: J. Mech. Phys. Solids 14, (1966) p.163–176.

Google Scholar

[23] A.A. Shi, Y. Lin, T.C. Ovaert: J. Tribol. 125, (2003) p.223–231.

Google Scholar

[24] V. Kahya, A. Birinci and R. Erdol: International Journal of Computational and Mathematical Sciences, (2007), 1, 121–127.

Google Scholar

[25] R. Batra, R and W. Jian: Int. J. Solids Struct., 45(22), (2008), p.5814–5830

Google Scholar

[26] C. Bagault, D. Nelias, and M.C. Baietto: Journal of Tribology 134 (3), (2012) 031401-1–031401-8.

Google Scholar

[27] H. Ashrafi, M. Mahzoon and M.Shariyat: Iranian Journal of Materials Science and Engineering, (2012), 9(1): 29-41.

Google Scholar

[28] X.-Q. Dong, Y.-T. Zhou, L.-M. Wang, S.-H. Ding, J.-B. Park: Arch Appl. Mech.(2014)

Google Scholar

[29] G. Ramirez, P. Heyliger: Smart Mater. Struct. 12, (2003) p.612–625.

Google Scholar

[30] G. Ramirez: Journal of Smart Materials and Structures, Vol. 15 No 5, (2006) pp.1287-1295.

Google Scholar

[31] Y.T. Zhou, K.Y. Lee: Philosophical Magazine Vol. 92 No. 15, (2012) p.1937–1965.

Google Scholar

[32] Y.T. Zhou, K.Y. Lee: Arch Appl. Mech. 83, (2013) p.73–95.

Google Scholar

[33] S. Krenk: Journal of Composite Materials, 13, (1979) pp.108-116.

Google Scholar

[34] A. Cinar, F. Erdogan: International Journal of Fracture, (1982) p.83–102.

Google Scholar

[35] M. Ozturk, F. Erdogan: International Journal of Engineering, Sci.Vol.35. No. 9, (1997) pp.869-883.

Google Scholar

[36] M. Ozturk, F. Erdogan: International Journal of Fracture, 98, (1999) p.243–261.

Google Scholar

[37] M.A. Guler: Contact stresses in an orthotropic medium: a closed-form solution, submitted to journal (2014).

Google Scholar

[38] M. A. Guler, F. Erdogan: International Journal of Solids and Structures, Vol. 41, (2004), p.3865–3889.

Google Scholar

[39] M. A. Guler, F. Erdogan: Mechanics of Materials, Vol. 38, (2006), p.633–647.

Google Scholar

[40] M. A. Guler, F. Erdogan: International Journal of Mechanical Sciences, Vol. 49, No. 2, (2007), p.161–182.

Google Scholar

[41] I. Bakırtaş: International Journal of Engineering Science, Vol. 22, No. 4, (1984), pp.347-359.

Google Scholar

[42] F. Erdogan: Fracture materials and contact problems in materials involving graded coatings and interfacial zones, Final Technical Reports, Lehigh University, (2001).

DOI: 10.21236/ada387409

Google Scholar

[43] Y.T. Chou: Journal of Applied Physics 33, (1962) p.2747–2751.

Google Scholar

[44] F. Erdogan and G. D. Gupta: Quarterly of Applied Mathematics Vol. 29 (1972) pp.525-534.

Google Scholar

[45] F. Erdogan, G. D. Gupta and T. S. Cook: Numerical solution of singular integral equations, Method of Analysis and Solution of Crack Problems, G.C. Sixth (ed.), Noordhoff, Int. Publ. Leyden, (1973) pp.368-425.

DOI: 10.1007/978-94-017-2260-5_7

Google Scholar