Anisotropic Contact and Wear Simulation Using Boundary Elements

Article Preview

Abstract:

Wear is present in all mechanical interface interaction problems –contact, fretting, orrolling-contact–, and it is one of the main reasons for inoperability in mechanical components. Thepresented work is a review of recent research carried out by the authors [1, 2, 3]. A boundary-element-based methodology to compute anisotropic wear on 3D contact, fretting, or rolling-contact conditionsis presented. Damage on the geometries of the solids and the contact pressures evolution under or-thotropic tribological properties can be predicted using this contact framework, where the formulationuses the Boundary Element Method to compute the elastic inuence coefcients. Contact problem isbased on an Augmented Lagrangian formulation, and restrictions fullment is established by a set ofprojection functions. The boundary element anisotropic wear formulation presented is illustrated withsome examples, in which some studies about the inuence of anisotropic wear on contact variablesevolution are shown.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-98

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Rodríguez-Tembleque, R. Abascal and M.H. Aliabadi: Comput. Methods Appl. Mech. Engrg. Vol. 41 (2012), p.1.

Google Scholar

[2] L. Rodríguez-Tembleque, R. Abascal and M.H. Aliabadi: CMES. Vol. 87 (2012), p.127.

Google Scholar

[3] L. Rodríguez-Tembleque and R. Abascal: Int. J. Numer. Mech. Engrg. Vol. 94 (2013), p.687.

Google Scholar

[4] R. Holm: Electric Contacts (Almquist and Wiksells Akademiska Handböcker, Stockholm, 1946).

Google Scholar

[5] J.F. Archard: J. Appl. Phys. Vol. 24 (1953), p.981.

Google Scholar

[6] E. Rabinowicz: Friction and Wear of Materials, second ed. (Wiley, New York, 1995).

Google Scholar

[7] D.a. Hills and D. Nowell: Mechanics of Fretting Fatigue. (Kluwer Academic Publishers, Dordrecht, London, 1994).

Google Scholar

[8] I.G. Goryacheva, P.T. Rajeev and T.N. Farris: ASME J. Tribol. Vol. 123 (2001), p.848.

Google Scholar

[9] D.A. Hills, A. Sackfield and R.J.H. Paynter:ASME J. Tribol. Vol. 131 (2009), p.31401.

Google Scholar

[10] D. Nowell: ASME J. Tribol. Vol. 131 (2010), p.21402.

Google Scholar

[11] U. Olofsson, A. Andersson and S. Björklund: Wear. Vol. 241 (2000), p.180.

Google Scholar

[12] T. Jendel: Wear. Vol. 253 (2002), p.89.[13] R. Enblom and B. Mats: Wear. Vol. 258 (2005), p.1055.

Google Scholar

[14] T. Telliskivi: Wear. Vol. 256 (2004), p.817.

Google Scholar

[15] T. Telliskivi and U. Olofsson: Wear. Vol. 257 (2004), p.1145.

Google Scholar

[16] V. Hegadekatte, S. Kurzenhäuser and O. Kraft: Tribol. Int. Vol. 41 (2008), p.1020.

Google Scholar

[17] L. Johansson: ASME J. Tribol. Vol. 116 (1994), p.247.

Google Scholar

[18] N. Strömberg, L. Johansson and A. Klarbring: Int. J. Solids Struct. Vol. 33 (1996), p.1817.

Google Scholar

[19] N. Strömberg: Eur. J. Mech. A. Solids Vol. 16 (1997), p.573.

Google Scholar

[20] N. Strömberg: Int. J. Solids Struct. Vol. 36 (1999) p.2075.

Google Scholar

[21] P. Ireman A. Klarbring and N. Strömberg: Int. J. Solids Struct. Vol. 40 (2003), p.2957.

Google Scholar

[22] P. Ireman, A. Klarbring and N. Strömberg: CMES. Vol. 52 (2009), p.125.

Google Scholar

[23] P. Põdra and s. Andersson: Tribol. Int. Vol. 32 (1999), p.71.

Google Scholar

[24] P. Põdra and S. Andersson: Wear. Vol. 224 (1999), p.13.

Google Scholar

[25] I.R. McColl J. Ding and S.B. Leen: Wear. Vol. 256 (2004), p.1114.

Google Scholar

[26] J.J. Madge, S.B. Leen, I.R. McColl and P.H. Shipway: Wear. Vol. 262 (2007), p.1159.

Google Scholar

[27] F. Jourdan and A. Samida: Comput. Meth. Appl. Mech. Eng. Vol. 198 (2009), p.2209.

Google Scholar

[28] I. Paczelt, S. Kucharski and Z. Mróz: Wear. Vol. 274-275 (2012), p.127.

Google Scholar

[29] I. Paczelt and Z. Mróz: Comput. Methods Appl. Mech. Engrg. Vol 249-252 (2012), p.75.

Google Scholar

[30] S. Stupkiewicz: Comput. Methods Appl. Mech. Engrg. Vol. 260 (2013), p.130.

Google Scholar

[31] J. Lengiewicz and S. Stupkiewicz: Wear. Vol. 303 (2013), p.611.

Google Scholar

[32] G.K. Sfantos and M.H. Aliabadi: Int. J. Solids Struct. Vol. 43 (2006), p.3626.

Google Scholar

[33] G.K. Sfantos and M.H. Aliabadi: Wear. Vol. 260 (2006), p.1119.

Google Scholar

[34] G.K. Sfantos and M.H. Aliabadi: Wear. Vol. 262 (2007), p.672.

Google Scholar

[35] G.K. Sfantos and M.H. Aliabadi: Journal of Biomechanics. Vol. 40 (2007), p.378.

Google Scholar

[36] C. Y. Lee, L.S. Tian, J.W. Bae, Y.S. Chai: Tribol. Int. Vol. 42 (2009), p.951.

Google Scholar

[37] T. W. Kim, S.M. Moon and Y.J. Cho: Tribol. Int. Vol. 44 (2011), p.1571.

Google Scholar

[38] L. Rodríguez-Tembleque, R. Abascal and M.H. Aliabadi: Int. J. Solids Struct. Vol. 47 (2010), p.2600.

Google Scholar

[39] L. Rodríguez-Tembleque, R. Abascal and M.H. Aliabadi: Engng. Anal. Bound. Elem. Vol. 35 (2011), p.935.

Google Scholar

[40] E. Rabinowicz: Nature. Vol. 179 (1957), p.1073.

Google Scholar

[41] M. Halaunbrenner: Wear. Vol. 3 (1960), p.421.[42] E. Minford and K. Prewo: Wear. Vol. 102 (1985), p.253.

Google Scholar

[43] R. Buczkowski and M. Kleiber: Int. J. Numer. Meth. Eng. Vol. 40 (1997), p.599.

Google Scholar

[44] R. Buczkowski and M. Kleiber: Arch. Comput. Methods. Vol. 16 (2009), p.399.

Google Scholar

[45] H.W. Zhang, S.Y. He, X.S. Li and P. Wriggers: Comput. Mech. vol. 34 (2004), p.1.

Google Scholar

[46] R.S. Jones and P. Papadopoulos: Comput. Method. Appl. Mech. Eng. Vol. 195 (2006), p.588.

Google Scholar

[47] A. Konyukhov and K. Schweizerhof: Comput. Method. Appl. Mech. Eng. Vol. 196 (2006), p.289.

Google Scholar

[48] M. Hjiaj, G. de Saxcé and Z. Mróz:Eur. J. Mech. A/Solids. Vol. 21 (2002), p.49.

Google Scholar

[49] M. Hjiaj, Z.-Q. Feng, G. de Saxcé and Z. Mróz: Int. J. Numer. Meth. Eng. Vol. 60 (2004), p.2045.

Google Scholar

[50] Z.-Q. Feng, M. Hjiaj, G. de Saxcé and Z. Mróz: Comput. Mech. Vol. 37 (2006), p.349.

Google Scholar

[51] P. Alart and A. Curnier: Comput. Method. Appl. Mech. Eng. Vol. 92 (1991), p.353.

Google Scholar

[52] A. Klarbring, in: A. Proceedings Contact Mechanics International Symposium, edited by A. Curnier Presses Polytechniques et Universitaires Romandes, Lausanne (1992).

Google Scholar

[53] A. Klarbring, in: Computational methods in contact mechanics, adited by M.H. Aliabadi and C.A. Brebbia Computational Mechanics Publications (1993).

Google Scholar

[54] P.W. Christensen, A. Klarbring, J.S. Pang and N. Stromberg: Int. J. Numer. Meth. Eng. Vol. 42 (1998), p.145.

Google Scholar

[55] J.A. González, K.C. Park, C.A. Felippa and R. Abascal: Comput. Method. Appl. Mech. Eng. Vol. 197 (2008), p.623.

Google Scholar

[56] J.J. Kalker: Three-dimensional Elastic Bodies in Rolling Contact. (Kluwer Academic Press, Dordrecht, 1990).

Google Scholar

[57] J.A. González and R. Abascal: Engng. Anal. Bound. Elem. Vol. 21 (1998), p.392.

Google Scholar

[58] J.A. González and R. Abascal: Int. J. Numer. Methods Eng. Vol. 49 (2000), p.1143.

Google Scholar

[59] J.A. González and R. Abascal: Int. J. Numer. Methods Eng. Vol. 53 (2002), p.843.

Google Scholar

[60] R. Abascal and L. Rodríguez-Tembleque: Commun. Numer. Meth. Engng. Vol. 33 (2007), p.905.

Google Scholar

[61] L. Rodríguez-Tembleque and R. Abascal: Int. J. Solids Struct. Vol. 47 (2010), p.330.

Google Scholar

[62] A. Zmitrowicz: Int. J. Engng. Sci. Vol. 31 (1993), p.509.

Google Scholar

[63] A. Zmitrowicz: J. Theor. Appl. Mech. Vol. 31 (2006), p.509.

Google Scholar

[64] P. Wriggers: Computational Contact Mechanics. (West Sussex, England, 2002).

Google Scholar

[65] A. Curnier: Int. J. Solids Struct. Vol. 7 (1984), p.637.

Google Scholar

[66] R. Michalowski and Z. Mróz: Int. J. Solids Struct. Vol. 7 (1984), p.637.[67] Z. Mróz and S. Stupkiewicz: Int. J. Solids Struct. Vol. 31 (1994), p.1113.

Google Scholar

[68] A. Zmitrowicz: Int. J. Solids Struct. Vol. 36 (1999), p.2825.

Google Scholar

[69] A. Zmitrowicz: Int. J. Solids Struct. Vol. 43 (2006), p.4407.

Google Scholar

[70] A. Zmitrowicz: Arch. Comput. Methods. Vol. 80 (2010), p.1407.

Google Scholar

[71] C. A. Brebbia and J. Dominguez: Boundary Elements: An Introductory Course (second edition). (Computatinal Mechanics Publications. John Wiley & Sons, 1992).

Google Scholar

[72] M. H. Aliabadi: The Boundary Element Method Vol2: Applications in Solids and Structures. (John Wiley & Sons, 2002).

Google Scholar

[73] L. Rodríguez-Tembleque and R. Abascal: Comput. Struct. Vol. 88 (2010), p.924.

Google Scholar

[74] J. Blazek: Computational Fluids Dynamics: Principles and Aplications. (Elsevier, New York, 2001).

Google Scholar

[75] Rodríguez-Tembleque, L., Buroni, F.C., Abascal, R., Sáez, A. 3D frictional contact of anisotropic solids using BEM. Eur. J. Mech. A. Solids. 2011; 30: 95-104.

DOI: 10.1016/j.euromechsol.2010.09.008

Google Scholar

[76] L. Rodríguez-Tembleque, F.C. Buroni, R. Abascal and A. Sáez: Int. J. Solids Struct. Vol. 50 (2013), p.3947.

Google Scholar

[77] L. Rodríguez-Tembleque, A. Sáez and F.C. Buroni: CMES. Vol. 96 (2013), p.131.

Google Scholar