Life Assessment in Fretting Fatigue

Article Preview

Abstract:

Fretting fatigue denotes the detrimental effect on a material arising from the cyclic sliding of two contacting surfaces with small relative displacements between them. One or both of the components in contact may be subject to bulk stresses caused by cyclic loads. The assessment of the fretting fatigue strength and life of any component is a complicated issue due to the many parameters affecting it, the complexity of the stress fields cyclic variation during fretting and the uncertainties associated to the contact conditions. This paper describes some singular aspects of fretting fatigue related to strength analysis and testing, presents a procedure developed by the authors during the last years to estimate the fretting fatigue strength and life and compares the assessment outcomes with the results of tests carried out by different authors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-122

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.B. Waterhouse and T.C. Lindley: Fretting Fatigue (ESIS Publication 18, Mech. Eng. Publ., 1994).

Google Scholar

[2] D.W. Hoeppner, V. Chandrasekaran and C.B. Elliot: Fretting Fatigue: Current Technology and Practices, ASTM STP 1367 (American Society for Testing and Materials, West Conshohocken, 2000).

Google Scholar

[3] J.M. Dobromirski, in: Standardization of Fretting Fatigue Test Methods and Equipment, ASTM STP 1159, edited by M.H. Attia and R.B. Waterhouse, American Society for Testing and Materials, West Conshohocken (1992).

DOI: 10.1520/stp1159-eb

Google Scholar

[4] E.M. Eden, W.N. Rose and F.L. Cunningham: Proc. of the Institution for Mechanical Engineers 4 (1911), p.839.

Google Scholar

[5] N. Yamashita and T. Mura: Wear Vol. 91 (1983), p.235.

Google Scholar

[6] V. Lamac, M.C. Dubourg and L. Vincent: Tribology International Vol. 30 (1997), p.391.

Google Scholar

[7] R.A. Antoniou and T.C. Radtke: Materials Science and Engineering Vol. A237 (1997), p.229.

Google Scholar

[8] C. Ruiz, P.H.B. Boddington and K.C. Chen: Experimental Mechanics Vol. 24 (1984), p.208.

Google Scholar

[9] Z.R. Zhou, S. Goudreau, M. Fiset and A. Cardou: Wear Vol. 181-183 (1995), p.537.

DOI: 10.1016/0043-1648(95)90169-8

Google Scholar

[10] K. Sato: Wear Vol.125 (1988), p.163.

Google Scholar

[11] K.J. Nix and T.C. Lindley: Fatigue and Fracture of Engineering Materials and Structures Vol. 8 (1985), p.143.

Google Scholar

[12] D.A. Hills and D. Nowell, in: Standardization of Fretting Fatigue Tests Methods and Equipments, edited by H.M. Attia, and R.B. Waterhouse, ASTM STP 1159, American Society for Testing and Materials, West Conshohocken (1992).

Google Scholar

[13] C.D. Lykins, S. Mall and V.K. Jain: International Journal of Fatigue Vol. 22 (2000), p.703.

Google Scholar

[14] A.L. Hutson, T. Nicholas, S.E. Olson and N.E. Ashbaugh: International Journal of Fatigue Vol. 23 (2001), p. S445.

Google Scholar

[15] S. Muñoz, C. Navarro and J. Domínguez: Engineering Fracture Mechanics Vol. 74 (2007), p.2168.

Google Scholar

[16] C. Navarro, J. Vázquez and J. Domínguez: Engineering Fracture Mechanics Vol. 78 (2011), p.1590.

Google Scholar

[17] C. Navarro, S. Muñoz and J. Domínguez: Strain Vol. 47 (2011), p.283.

Google Scholar

[18] J. Domínguez: Wear Vol. 218 (1998), p.43.

Google Scholar

[19] C. Navarro, S. Muñoz and J. Domínguez: International Journal of Fatigue Vol. 30 (2008), p.32.

Google Scholar

[20] K. Sato, H. Fujii and S. Kodama: Bulletin of JSME Vol. 29 (1986), p.3253.

Google Scholar

[21] T. Hattori, M. Nakamura, H. Sakata and T. Watanabe: JSME International Journal, Series 1, 31 (1988), p.100.

Google Scholar

[22] B.U. Wittkowsky, P.R. Birch, J. Domínguez and S. Suresh: Fatigue and Fracture of Engineering Materials and Structures Vol. 22 (1999), p.307.

DOI: 10.1046/j.1460-2695.1999.00145.x

Google Scholar

[23] K. Nishioka and K. Hirakawa: Bulletin of the JSME Vol. 12 (1969), p.180.

Google Scholar

[24] D.W. Hoeppner and G.L. Goss: Wear Vol. 27 (1974), p.175.

Google Scholar

[25] D. Nowell: PhD Thesis, Oxford University, 1988.

Google Scholar

[26] M.P. Szolwinski: Master's Thesis, Purdue University, W. Lafayette, IN, 1995.

Google Scholar

[27] K. Endo, H. Goto and T. Fukunaga: Bulletin of the JSME Vol. 17 (1974), p.647.

Google Scholar

[28] A.J. Fenner and J.E. Field: Proceedings N. E. Coast Institute of Engineers and Shipbuilders Vol. 76 (1960), p.183.

Google Scholar

[29] K.J. Nix and T.C. Lindley: Fatigue Fract. Engng Mater. Struct. Vol. 8 (1985), p.143.

Google Scholar

[30] W.D. Milestone, in: Proceedings AIAA Structural dynamics and materials conference, Denver, (1970).

Google Scholar

[31] L. Vincent, Y. Berthier, M.C. Duborg and M. Godet: Wear Vol. 153 (1992), p.135.

Google Scholar

[32] L.H. Favrow, D. Werner, D.D. Pearso, M.J. Lutian, B.S. Annigeri and D.L. Anton, in: Fretting Fatigue: Current Technology and Practices, edited by D.W. Hoeppner, V. Chandrasekaran, and C.B. Elliot, ASTM STP 1367, American Society for Testing and Materials, West Conshohocken (2000).

DOI: 10.1520/stp14743s

Google Scholar

[33] J. Meriaux, S. Fouvry, K.J. Kubiak and S. Deyber: International Journal of Fatigue Vol. 32 (2010), p.1658.

Google Scholar

[34] D.A. Hills and D. Nowell: Fretting Fatigue, in: R.B. Waterhouse and T.C. Lindley (Eds.), Fretting Fatigue, ESIS Publication 18, Mech. Eng. Publ., London, 1995, p.171.

Google Scholar

[35] K. Sato, in: M. H. Attia, R.B. Waterhouse, Standardization of Fretting Fatigue Test Methods and Equipment, ASTM STP 1159, American Society for Testing and Materials, West Conshohocken, 1992, p.85.

DOI: 10.1520/stp1159-eb

Google Scholar

[36] M. Ciavarella, D.A. Hills and G. Mono: Proceedings of Institution of Mechanical Engineers, Part C, Vol. 212 (1998), p.319.

Google Scholar

[37] C. Navarro, A. Mugadu, D.A. Hills and J. Domínguez: International Journal of Mechanical Sciences Vol. 45 (2003), p.757.

Google Scholar

[38] H. Murthy: Master's Thesis, Purdue University, W. Lafayette, IN, (2000).

Google Scholar

[39] K.L. Johnson: Contact Mechanics (Cambridge University Press, 1985).

Google Scholar

[40] A. Sackfield and A. Hills: Journal of Strain Analysis Vol. 18 (1983), p.195.

Google Scholar

[41] R. Bramhall: PhD. Thesis, Oxford University, 1973.

Google Scholar

[42] D. Nowell and D.A. Hills: International Journal of Mechanical Sciences Vol. 29 (1987), p.355.

Google Scholar

[43] N.I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity (Noordhoff Int. publishing, Leyden, 1954).

Google Scholar

[44] D.A. Hills and D. Nowell: Mechanics of fretting fatigue (Kluwer Academic Publisher, London, 1994).

Google Scholar

[45] J. Vázquez, C. Navarro and J. Domínguez: International Journal of Mechanical Sciences Vol. 67 (2013), p.53.

Google Scholar

[46] C. Cattaneo: Reconditi dell Accademia Nazionale dei Lincei Vol. 27 (1938), p.434, p.342, p.474.

Google Scholar

[47] G.M. Hamilton: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science Vol. 197(1983), p.53.

Google Scholar

[48] A. Fatemi and D. Socie: Fatigue and Fract of Engng Mater and Struct Vol. 11 (1988), p.145.

Google Scholar

[49] R.C. McClung, W.L. Francis and S.J. Hudak Jr.: 9th International Fatigue Congress, Atlanta, May 2006.

Google Scholar

[50] C. Vallellano, J. Domínguez and A. Navarro: Fatigue Fract Engng Mater Struct. Vol. 26 (2003), p.469.

Google Scholar

[51] M.H. El Haddad, T.H. Topper and K.N. Smith: Engng. Fract. Mech. Vol. 2 (1979), p.573.

Google Scholar