Transient Dynamic Analysis of Cracked Multifield Solids with Consideration of Crack-Face Contact and Semi-Permeable Electric/Magnetic Boundary Conditions

Article Preview

Abstract:

Boundary element method (BEM) formulations for transient dynamic crack analysis intwo-dimensional (2D) multifield materials are reviwed in this paper. Both homogeneous and lin-ear piezoelectric as well as magnetoelectroelastic material models are considered. Special attentionis paid to properly modeling the non-linear crack-face contact and semi-permeable electric/magneticboundary conditions. Implementation of the corresponding time-domain BEM(TDBEM) is discussedin detail. The proposed TDBEM uses a Galerkin-method for the spatial discretization, whilst thecollocation method is considered for the temporal discretization. Iterative solution algorithms aredeveloped to compute the non-linear crack-face boundary conditions. Crack-tip elements that ac-count for the square-root local behavior of the crack opening displacements (CODs) at the crack-tipsare implemented. In this way, stress intensity factors (SIF), electric displacement intensity factor(EDIF) and magnetic induction intensity factor (MIIF) may be accurately evaluated from the nu-merically computed CODs at the closest nodes to the crack-tips. Numerical examples involving sta-tionary cracks in piezoelectric and magnetoelectroelastic solids under different combined (mechani-cal/electric/magnetic) impact loadings are investigated, in order to illustrate the effectiveness of theproposed approach and characterize the influence of the semi-permeable crack-face boundary condi-tions on the dynamic field intensity factors.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] P. Curie, J. Curie: C. R. Acad. Sci. Vol. 91 (1880), pp.294-295

Google Scholar

[2] G. Lippmann: Ann. Chim. Phys. Vol. 24 (1881), pp.145-178

Google Scholar

[3] W.G. Cady: Piezoelectricity (McGraw-Hill, New York 1946)

Google Scholar

[4] T. Ikeda: Fundamentals of Piezoelectricity (Oxford University Press, New York 1996)

Google Scholar

[5] J.V. Suchtelen: Phillips Res. Rep. Vol. 27 (1972), pp.28-37

Google Scholar

[6] C.W. Nan: Physical Review B Vol. 50 (1994), pp.6082-6088

Google Scholar

[7] W. Eerenstein, N.D. Mathur, J.F. Scott: Nature Vol. 442 (2006), pp.759-765

Google Scholar

[8] C.W. Nan, M.I. Bichurn, S. Dong, D. Viehland, G. Srinivasan: J. Appl. Phy. Vol. 103 (2008), p.031101

Google Scholar

[9] H.-T. Chung, B.-C. Shin, H.-G. Kim: Journal of the American Ceramic Society Vol. 72 (1989), pp.327-329

Google Scholar

[10] Z.Suo, C.-M. Kuo, D.M. Barnett, J.R. Willis: Journal of the Mechanics and Physics of Solids Vol. 40 (1992), pp.739-765

Google Scholar

[11] M. Kuna: Eng. Fract. Mech. Vol. 77 (2010), pp.309-326[12] Y.E. Pak: Int. J. Fracture Vol. 54 (1992), pp.79-100

Google Scholar

[13] C. Dascalu, G.A. Maugin: Q. J. Mech. Appl. Math., Vol. 48 (1995), pp.237-255

Google Scholar

[14] Y. Shindo, F. Narita, E. Ozawa: Acta Mech. Vol. 137 (1999), pp.99-107

Google Scholar

[15] C.F. Gao, H. Kessler, H. Balke: Int. J. Engrg. Sci. Vol. 41 (2003), pp.969-981

Google Scholar

[16] C.F. Gao, H. Kessler, H. Balke: Int. J. Engrg. Sci. Vol. 41 (2003), pp.983-994

Google Scholar

[17] X.-F. Li: Int. J. Solids Struct. Vol. 42 (2005), pp.3185-3205

Google Scholar

[18] X.-C. Zhong, X.-F. Li, K.-Y. Lee: Comput. Mater. Sci. Vol. 45 (2009), pp.905-911

Google Scholar

[19] M. Enderlein, A. Ricoeur, M. Kuna: Int. J. of Fracture Vol. 134 (2005), pp.191-208

Google Scholar

[20] M. Kuna: Arch. Appl. Mech. Vol. 76 (2006), pp.725-745

Google Scholar

[21] B.L. Wang, Y.W. Mai: Comput. Methods Appl. Mech. Eng. Vol. 196 (2007), pp.2044-2054

Google Scholar

[22] E. Béchet, M. Scherzer, M. Kuna: International Journal for Numerical Methods in Engineering Vol. 77 (2009), pp.1535-1565

Google Scholar

[23] R. Rojas-Díaz, N. Sukumar, A. Sáez, F. García-Sánchez: International Journal for Numerical Methods in Engineering Vol. 88 (2011), pp.1238-1259

DOI: 10.1002/nme.3219

Google Scholar

[24] H. Nguyen-Vinha, I. Bakara, M.A. Msekha, J.-H. Songa, J. Muthua, G. Zia, P. Lea, S.P.A. Bordasa, R. Simpsona, S. Natarajana, T. Lahmera, T. Rabczuk: Engineering Fracture Mechanics Vol. 92 (2012), pp.19-31

Google Scholar

[25] T.Q. Bui, Ch. Zhang: Finite Elements in Analysis and Design Vol. 69 (2013), pp.19-36

Google Scholar

[26] J. Sladek, V. Sladek, P. Solek, S.N. Atluri: CMES - Computer Modeling in Engineering and Sciences Vol. 34 (2008), pp.273-300

Google Scholar

[27] J. Sladek, V. Sladek, P. Solek, E. Pan: Computational Mechanics Vol. 42 (2008), pp.697-714

DOI: 10.1007/s00466-008-0269-z

Google Scholar

[28] Y. Li, W. Feng, Z. Xu: Computer Methods in Applied Mechanics and Engineering Vol. 198 (2009), pp.2347-2359

Google Scholar

[29] J. Sladek, P. Stanak, Z.-D. Han, V. Sladek, S.N. Atluri: CMES - Computer Modeling in Engineering and Sciences Vol. 92 (2013), pp.423-475.

Google Scholar

[30] E. Pan: Engineering Analysis with Boundary Elements Vol. 23 (1999), pp.67-76

Google Scholar

[31] G. Davi, A. Milazzo: International Journal of Solids and Structures Vol. 38 (2001), pp.7065-7078

Google Scholar

[32] F. García-Sánchez, A. Sáez, J. Dominguez: Computers and Structures Vol. 83 (2005), pp.804-820

Google Scholar

[33] F. García-Sánchez, R. Rojas-Díaz, A. Sáez, C. Zhang: Theoretical and Applied Fracture Mechanics Vol. 47 (2007), pp.192-204

DOI: 10.1016/j.tafmec.2007.01.008

Google Scholar

[34] R. Rojas-Díaz, F. García-Sánchez, A. Sáez: International Journal of Solids and Structures Vol. 47 (2010), pp.71-80.

Google Scholar

[35] M. Wünsche, F. García-Sánchez, A. Sáez, C. Zhang: Engineering Analysis with Boundary Elements Vol. 34 (2010), pp.377-387[36] R. Rojas-Díaz, F. García-Sánchez, A. Sáez, E. Rodriguez-Mayorga, C. Zhang: Computer Methods in Applied Mechanics and Engineering Vol. 200 (2011), pp.2931-2942

DOI: 10.1016/j.cma.2011.06.004

Google Scholar

[37] M. Wünsche, A. Sáez, F. García-Sánchez, C. Zhang: European Journal of Mechanics, A/Solids Vol. 32 (2012), pp.118-130

Google Scholar

[38] M.H. Aliabadi: Applied Mechanics Reviews Vol. 50 (1997), pp.83-96

Google Scholar

[39] Y.J. Liu, S. Mukherjee, N. Nishimura, M. Schanz, W. Ye, A. Sutradhar, E. Pan, N.A. Dumont, A. Frangi, A. Saez: Applied Mechanics Reviews Vol. 64 (2011), art. no. 031001

DOI: 10.1115/1.4005491

Google Scholar

[40] T.H. Hao, Z.Y. Shen: Engineering Fracture Mechanics Vol. 47 (1994), pp.793-802

Google Scholar

[41] O. Gruebner, M. Kamlah, D. Munz: Engineering Fracture Mechanics Vol. 70 (2003), pp.1399-1413

DOI: 10.1016/s0013-7944(02)00117-0

Google Scholar

[42] B.L. Wang, Y.-W. Mai: International Journal of Engineering Science Vol. 41 (2003), pp.633-652

Google Scholar

[43] C.M. Landis: International Journal of Solids and Structures Vol. 41 (2004), pp.6291-6315

Google Scholar

[44] B.-L. Wang, Y.-W. Mai: Journal of Applied Mechanics, Transactions ASME Vol. 71 (2004), pp.575-578

Google Scholar

[45] B.-L. Wang, Y.-W. Mai: International Journal of Solids and Structures Vol. 44 (2007), pp.387-398

Google Scholar

[46] K. Wippler, A. Ricoeur, M. Kuna: Engineering Fracture Mechanics Vol. 71 (2004), pp.2567-2587

DOI: 10.1016/j.engfracmech.2004.03.003

Google Scholar

[47] M. Denda: Key Engineering Materials Vol. 383 (2008), pp.67-84

Google Scholar

[48] R. Rojas-Díaz, M. Denda, F. García-Sánchez, A. Sáez: European Journal of Mechanics, A/Solids Vol. 31 (2012), pp.152-162.

DOI: 10.1016/j.euromechsol.2011.08.002

Google Scholar

[49] M. Wünsche, C. Zhang, F. García-Sanchez, A. Sáez, J. Sladek, V. Sladek: Computer Methods in Applied Mechanics and Engineering Vol. 200 (2011), pp.2848-2858

DOI: 10.1016/j.cma.2011.05.007

Google Scholar

[50] M. Wünsche, C. Zhang, J. Sladek, V. Sladek, A. Sáez, F. García-Sánchez: Engineering Fracture Mechanics Vol. 97 (2013), pp.297-313

DOI: 10.1016/j.engfracmech.2012.08.006

Google Scholar

[51] D.M. Barnett, J. Lothe: Physica Status Solidi (B) Basic Research Vol. 67 (1975), pp.105-111

Google Scholar

[52] A. Soh, J. Liu: Journal of Intelligent Material Systems and Structures Vol. 16 (2005), pp.597-602

Google Scholar

[53] R. Rojas-Díaz, A. Sáez, F. García-Sánchez, Ch. Zhang International Journal of Solids and Structures Vol. 45 (2008), pp.144-158.

Google Scholar

[54] C.-Y. Wang, Ch. Zhang Engineering Analysis with Boundary Elements Vol. 29 (2005) pp.454-465.

Google Scholar

[55] M. Bonnet Boundary Integral Equation Methods for Solids and Fluids (John Wiley & Sons Ltd, 1999)

Google Scholar

[56] L.J. Gray Advances in Boundary Elements, (Computational Mechanics Publishers: Southampton, UK, 1998; 33-84)

Google Scholar

[57] F. García-Sánchez, Ch. Zhang, A. Sáez Computer Methods in Applied Mechanics and Engineering Vol. 197 (2008), pp.3108-3121.

Google Scholar