Nonlinear Time Spectral Analysis for a Dynamic Contact Model with Buckling for an Elastic Plate

Article Preview

Abstract:

In the present paper a dynamic nonlinear model with contact and buckling for an elasticplate is considered. The model consists of two coupled nonlinear hyperbolic type partial differentialequations. The plate is subjected to compressive and/or tensile moving loads on its edges. The foundationsare nonlinear elastic Winkler and Pasternak models. The initial-boundary value problems forthe model are solved with the use of the time spectral method for spatial discretization and after thediscretization the Newmark- time-stepping iterative scheme for the obtained system of nonlinear ordinarydifferential equations. The model is tested for the Winkler-type and shear Pasternak-type andas well for several values of the physical constants of the foundations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

227-239

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.T. Katsikadelis and A.J. Yiotis: J. Eng. Math. Vol. 46 (2003), pp.313-330.

Google Scholar

[2] P.C. Dumir and A. Bhakar: Comp. Meth. Appl. Mech. Eng. Vol. 67 (1988), pp.111-124.

Google Scholar

[3] Hui-Shen Shen: Eng. Struct. Vol. 17(6) (1995), pp.407-412.

Google Scholar

[4] P. Malekzadeh and A.R. Setoodeh: Comp. Struct. Vol. 80 (2007), pp.569-579.

Google Scholar

[5] A.D. Muradova, M. Kurutz and G.E. Stavroulakis: Mech. Based Design Struct. Mach. Vol. 37(3) (2009), pp.349-370.

Google Scholar

[6] A. Borisovich, J. Dymkowska and C. Szymczak: AMRX (Applied Mathematics Research eXpress) (2006), pp.1-24.

Google Scholar

[7] A.D. Muradova and G.E. Stavroulakis: Comput. Methods Appl. Mech. Engrg. Vol. 205-208 (2012), pp.213-220.

Google Scholar

[8] A.D. Muradova and G.E. Stavroulakis: Nonlin. Anal.: Real World Appl. Vol. 8(4) (2007), pp.1261-1271.

Google Scholar

[9] O. Chau, J.R. Fernández, M. Shillor and M. Sofonea: J. Comput. Appl. Math. Vol. 159 (2003), pp.431-465.

Google Scholar

[10] V.F. Dem'yanov, G.E. Stavroulakis, L.N. Polyakova and P.D. Panagiotopoulos: Quasidifferentiability and Nonsmooth Modelling in Mechanics, Engineering and Economics (Dordrecht, Boston, London 1996).

DOI: 10.1007/978-1-4615-4113-4_4

Google Scholar

[11] G.E. Stavroulakis and L.N. Polyakova: Struct. Optimiz., Vol. 12 (1996), pp.167-176.

Google Scholar

[12] I. Lasiecka: Appl. Anal., Vol. 68 (1998), pp.121-145.

Google Scholar

[13] B.J. Matkowsky and L.J. Putnick: J. Elast., Vol. 5(2) (1975), pp.167-171.

Google Scholar

[14] C.Y. Chia: Nonlinear Analysis of Plates (McGraw-Hill 1980).

Google Scholar

[15] P.G. Ciarlet: Plates and Junctions in Elastic Multi-structures, An Asymptotic Analysis (RMA 14, Masson, Springer-Verlag 1990).

Google Scholar

[16] J.E. Lagnese: Boundary Stabilization of Thin Plates (SIAM 1989).

Google Scholar

[17] J.E. Lagnese: Int. Ser. Num. Math. Vol. 100 (1991), pp.247-264.

Google Scholar

[18] Y. Nath and S. Kumar: Comput. Methods Appl. Mech. Engrg. Vol. 125 (1995), pp.41-52.

Google Scholar

[19] R.E. Gordnier and R. Fithen: AIAA 2001-2853, 31st Fluid Dynamics Conference June (2001).

Google Scholar

[20] R.M. Kirby and Z. Yosibash: Comput. Methods Appl. Mech. Engrg. Vol. 193(6-8) (2004), pp.575-599.

Google Scholar

[21] Z. Yosibash, R.M. Kirby and D. Gottlieb: J. Comput. Phys. Vol. 200(2) (2004), pp.432-461.

Google Scholar

[22] J.P. Boyd: Chebishev and Fourier Spectral Methods (2d Edition, Dover, New York 2000)

Google Scholar

[23] A.D. Muradova and G.E. Stavroulakis: Int. J. Comput. Methods Engrg. Sci. Mech. Vol. 14 (2013), pp.1-9.[24] N.M. Newmark: ASCE J. of the Eng. Mech. Division, Vol. 85 (1959), N. EM3.

Google Scholar

[25] P. Ciarlet and P. Rabier: Les Equations de von Kármán (Springer-Verlag, Berlin, Heidelberg, New York 1980)

Google Scholar

[26] G. Duvaut and J.L. Lions: Les Inequations en Mecaniques et en Physiques, (Dunod 1972).

Google Scholar

[27] R.A. Adams: Sobolev Spaces (Academic Press, New York, San Francisko, London 1975).

Google Scholar

[28] A.D. Muradova: Adv. Comput. Math. Vol. 29(2) (2008), pp.179-206.

Google Scholar