[1]
N. Birks, G.H. Meir, F.S. Pettit, Introduction to the high-temperature oxidation of metals, 2nd edition, Cambridge University Press, (2006).
Google Scholar
[2]
H. Okada, Deformation of scale in hot strip rolling, Journal of the Japan Society for Technology of Plasticity, 44-505 (2003) 94-99. (in Japanese).
Google Scholar
[3]
P.A. Munther, J.G. Lenard, The effect of scaling on interfacial friction in hot rolling of steels, Journal of Materials Processing Technology, 88-1-3 (1999) 105-113.
DOI: 10.1016/s0924-0136(98)00392-6
Google Scholar
[4]
M. Torres, R. Colás, R., A model for heat conduction through the oxide layer of steel during hot rolling, Journal of Materials Processing Technology, 105-3 (2000) 258-263.
DOI: 10.1016/s0924-0136(00)00569-0
Google Scholar
[5]
R. Matsumoto, Y. Osumi, H. Utsunomiya, Reduction of friction of steel covered with oxide scale in hot forging, Journal of Materials Processing Technology, 214-3 (2014) 651-659.
DOI: 10.1016/j.jmatprotec.2013.10.011
Google Scholar
[6]
R. Douglas, D. Kuhlmann, Guidelines for precision hot forging with applications, Journal of Materials Processing Technology, 98-2 (2000) 182-188.
DOI: 10.1016/s0924-0136(99)00197-1
Google Scholar
[7]
B. -A. Behrens, E. Doege, S. Reinsch, K. Telkamp, H. Daehndel, A. Specker, Precision forging processes for high-duty automotive components, Journal of Materials Processing Technology, 185-1-3 (2007) 139-146.
DOI: 10.1016/j.jmatprotec.2006.03.132
Google Scholar
[8]
H. Utsunomiya, S. Doi, K. Hara, T. Sakai, S. Yanagi, Deformation of oxide scale on steel surface during hot rolling, CIRP Annals – Manufacturing Technology, 58-1 (2009) 271-274.
DOI: 10.1016/j.cirp.2009.03.050
Google Scholar
[9]
A.T. Male, M.G. Cockcroft, A method for the determination of the coefficient of friction of metals under conditions of bulk plastic deformation, Journal of the Institute of Metals, 93 (1964-1965) 38-46.
Google Scholar
[10]
A. Rahmel, J. Tobolski: Einfluss von wasserdampf und kohlendioxyd auf die oxydation von eisen in sauerstoff bei hohen temperaturen, Corrosion Science, 5-5 (1965) 333-346.
DOI: 10.1016/s0010-938x(65)90500-7
Google Scholar
[11]
C.T. Fujii, R.A. Meussner, The mechanism of the high-temperature oxidation of iron-chromium alloys in water vapor, Corrosion of Iron and Steel, 111-11 (1964) 1215-1221.
DOI: 10.1149/1.2425963
Google Scholar
[12]
H. Nakajima, Fabrication, properties, and applications of porous metals with directional pores, Proceedings of the Japan Academy, Series B, Physical and Biological Sciences, 88-9 (2010) 884-899.
DOI: 10.2183/pjab.86.884
Google Scholar