Sol-Gel Synthesis and Characterization of SiO2-CaO-P2O5-SrO Bioactive Glass: In Vitro Study

Article Preview

Abstract:

Bioactive glass of the type CaO–SrO–P2O5–SiO2 was obtained by the sol-gel processing method. Three samples containing 0 mol%, 5 mol% and 10 mol% of SrO were synthesized. The obtained bioactive glasses were characterized by the techniques such as, X-ray diffraction (XRD) and scanning electron microscope (SEM) and the effect of SrO/CaO substitution on in vitro biological properties of the synthesized glasses were evaluated and biocompatibility of the samples was measured using MTT assay. The results showed that incorporation of Sr in the obtained glass network did not result in any structural alteration of it due to the similar role of SrO compared with that of CaO. In vitro experiments with human osteosarcoma cell lines (MG-63) and MTT assay indicated that bioactive glass incorporating 5 mol% of Sr in the composition is non-toxic and revealed good biocompatibility.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

30-35

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Hoppe, A.R. Boccaccini, in: P.A. Netti (Ed. ), Biomedical Foams for Tissue Engineering Applications, Woodhead Publishing, 2014, pp.191-212.

DOI: 10.1533/9780857097033.2.191

Google Scholar

[2] M.N. Rahaman, in: A.R. Boccaccini, P.X. Ma (Eds. ), Tissue Engineering Using Ceramics and Polymers (Second Edition), Woodhead Publishing, 2014, pp.67-114.

Google Scholar

[3] J.R.J. Delben, K. Pereira, S.L. Oliveira, L.D.S. Alencar, A.C. Hernandes, A.A.S.T. Delben, Journal of Non-Crystalline Solids 361 (2013) 119-123.

DOI: 10.1016/j.jnoncrysol.2012.10.025

Google Scholar

[4] Z. Ma, H. Ji, X. Hu, Y. Teng, G. Zhao, L. Mo, X. Zhao, W. Chen, J. Qiu, M. Zhang, Applied Surface Science 284 (2013) 738-744.

DOI: 10.1016/j.apsusc.2013.08.003

Google Scholar

[5] Y. -Z. Liu, Y. Li, X. -B. Yu, L. -N. Liu, Z. -A. Zhu, Y. -P. Guo, Materials Science and Engineering: C 41 (2014) 196-205.

Google Scholar

[6] X. Chatzistavrou, E. Kontonasaki, K.M. Paraskevopoulos, P. Koidis, A.R. Boccaccini, in: P. Vallittu (Ed. ), Non-Metallic Biomaterials for Tooth Repair and Replacement, Woodhead Publishing, 2013, pp.194-231.

DOI: 10.1533/9780857096432.2.194

Google Scholar

[7] Q. -Z. Chen, Y. Li, L. -Y. Jin, J.M.W. Quinn, P.A. Komesaroff, Acta Biomaterialia 6 (2010) 4143-4153.

Google Scholar

[8] A. Lucas-Girot, F.Z. Mezahi, M. Mami, H. Oudadesse, A. Harabi, M. Le Floch, Journal of Non-Crystalline Solids 357 (2011) 3322-3327.

DOI: 10.1016/j.jnoncrysol.2011.06.002

Google Scholar

[9] A. Balamurugan, G. Sockalingum, J. Michel, J. Fauré, V. Banchet, L. Wortham, S. Bouthors, D. Laurent-Maquin, G. Balossier, Materials Letters 60 (2006) 3752-3757.

DOI: 10.1016/j.matlet.2006.03.102

Google Scholar

[10] A. Perardi, M. Cerrruti, C. Morterra, in: C.C. Aldo Gamba, C. Salvatore (Eds. ), Studies in Surface Science and Catalysis, Elsevier, 2005, pp.461-469.

Google Scholar

[11] J. Du, Y. Xiang, Journal of Non-Crystalline Solids 358 (2012) 1059-1071.

Google Scholar

[12] E. Gentleman, Y.C. Fredholm, G. Jell, N. Lotfibakhshaiesh, M.D. O'Donnell, R.G. Hill, M.M. Stevens, Biomaterials 31 (2010) 3949-3956.

DOI: 10.1016/j.biomaterials.2010.01.121

Google Scholar

[13] M.D. O'Donnell, R.G. Hill, Acta Biomaterialia 6 (2010) 2382-2385.

Google Scholar

[14] C. Wu, Y. Zhou, C. Lin, J. Chang, Y. Xiao, Acta Biomaterialia 8 (2012) 3805-3815.

Google Scholar

[15] A. Gorustovich, T. Steimetz, R.L. Cabrini, J.M. Porto López, Bone 41 (2007) S4.

DOI: 10.1016/j.bone.2007.09.015

Google Scholar

[16] N. Lotfibakhshaiesh, E. Gentleman, R. Hill, M. Stevens, Clinical Biochemistry 44 (2011) S36.

Google Scholar

[17] S.M. Salman, S.N. Salama, H.A. Abo-Mosallam, Ceramics International 38 (2012) 55-63.

Google Scholar