Combustion Synthesis of 58S Bioglass Using Sol-Gel Self-Propagating Combustion Method

Article Preview

Abstract:

In this work, attention was paid to the understanding of the chemical modifications occurring in xerogeis of 58S bioglass (60% mol SiO2; 36%mol CaO; 4%mol P2O5), during the 58S bioglass synthesis, prepared by the sol-gel (SG) and sol-gel self-propagating combustion (SGSPC) methods using citric acid as reductant/fuel. The chemical modifications of the xerogels were evaluated in the temperature range 70-920°C. Characteristic functional groups were evidenced by Fourier transform infrared spectroscopy (FTIR), and the thermal behaviour was evidenced by thermal gravimetric (TG) and differential thermal (DSC) analysis, the transition from glass to glass ceramic was also followed by X-ray diffraction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

36-42

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jerzy Zarzycki, Journal of sol-gel Science and Technology 8, 17-22 (1997).

Google Scholar

[2] Weidong Li, Jiazhi Li, Jinkun Guo, Journal of the European ceramic society 23 (2003) 2289-2295.

Google Scholar

[3] K. Amalajyothi, L. J. Berchmans, J. of Self-Propagating High-Temperature Synthesis, 2009, 18, 3, 151-153, (2009).

DOI: 10.3103/s1061386209030030

Google Scholar

[4] Yanina Minaberry, Matías Jobbágy, Chem. Mater., 2011, 23 (9), p.2327–2332.

Google Scholar

[5] Alexandrine Flambard, Lionel Montagne, Laurent Delevoye, Chem. Commun. 2006, 3426-3428.

Google Scholar

[6] W. Brockner, C. Ehrhardt,  Mimoza Gjikaj, Thermochimica Acta Volume 456, Issue 1, 1 May 2007, Pages 64–68.

Google Scholar

[7] S. Padilla, J. Román, A. Carenas, M. Vallet-Regí, Biomaterials 26 (2005) 475-483.

Google Scholar

[8] P.Y. Lee, H. Suematsu, T. Yano, K. Yatsui, journal of nanoparticles research (2006) 8: 911-917.

Google Scholar

[9] M. D´Apuzzo, A. Aeonne, S. Esposito, P. Pernice, J. Sol-Gel Science and Technology 17, 247-254 (2000).

Google Scholar

[10] Wenqi Gong, International Journal of Mineral Processing 63 2001, 147-165.

Google Scholar

[11] X. hong Guan, Q. Liu, G. Hao Chen, Chii Shang, Journal of colloid and interface science 289 (2005) 319-327.

Google Scholar

[12] S. Martinez, F. Puertas, Materiales de construcción, vol. 42 n0227, (1992).

Google Scholar

[13] S. Raynaud, E. Champion, D. Bernacha-Assollant, P. Thomas, Biomaterials 23 (2002) 1065-1072.

Google Scholar

[14] A. Meiszterics, Lászaló, H. Peterlik, János Rohonczy, Shiro Kubuki, J. Phys. Chem. A 2010, 114, 10403-10411.

DOI: 10.1021/jp1053502

Google Scholar

[15] Linn W. Hobbs, C. Esther Jesurum, C. Vinay Pulim, Philosophical Magazine A, 1998, VOL. 78, No. 3, 679-711.

DOI: 10.1080/014186198253453

Google Scholar

[16] C. Samba-Fouala, Jean-Charles M., M. Mossoyan, D. Benlian, C. Chanéac, F. Babonneau, J. Mater. Chem, 2000, 10, 387-393.

DOI: 10.1039/a908289a

Google Scholar

[17] Induni Wathsala Siriwardane, theses and Dissertations University of Iowa (2012).

Google Scholar

[18] A. Kaflak, A. Slosarczyk, W. Kollodziejski, Journal of Molecular Structure 997 (2011) 7-14.

Google Scholar