Evaluation of Sr- and/or Mg-Containing Hydroxyapatite Behavior in Simulated Body Fluid

Article Preview

Abstract:

The main goal of this study was to evaluate the behavior of Sr- and/or Mg-containing hydroxyapatite (HAp) bioceramics in simulated body fluid (SBF). Sr-and/or Mg-containing HAp powders were synthesized by modified wet chemical precipitation method. Sr-and/or Mg-containing HAp bioceramics were prepared by uniaxial pressing of the precipitated powders and subsequent sintering at 1100 °C for 1 h. The synthesis products were characterized in terms of chemical, phase and molecular composition. Influence of the substitutions on thermal stability, morphology and microstructure of the HAp products were evaluated. Results suggest that incorporation of Sr (up to 1.45 wt.%) in HAp structure induced an increasing of particle sizes, but incorporation of Mg (up to 1.05 wt.%) led to a reduction of particle sizes of the HAp powders. The ability to simultaneously release bioactive ions and the apatite-formation ability of the Sr-and/or Mg-containing HAp bioceramics were evaluated through immersing the samples in SBF for different time periods. Ca ions release and apatite-formation ability on the surfaces of the Sr-and/or Mg-containing HAp bioceramics in SBF depends on Sr and/or Mg concentration in the samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-66

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.H. Zhou, J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering, Acta Biomater. 7 (2011) 2769–2781.

DOI: 10.1016/j.actbio.2011.03.019

Google Scholar

[2] E. Boanini, M. Gazzano, A. Bigi, Ionic substitutions in calcium phosphates synthesized at low temperature, Acta Biomater. 6 (2010) 1882–1894.

DOI: 10.1016/j.actbio.2009.12.041

Google Scholar

[3] X. Zhang, T. Takahasi, K.S. Vecchio, Development of bioresorbable Mg-substituted tricalcium phosphate scaffolds for bone tissue engineering, Mater. Sci. Eng. C 29 (2009) 2003-(2010).

DOI: 10.1016/j.msec.2009.03.012

Google Scholar

[4] W. Mróz, A. Bombalska, S. Burdyńska, M. Jedyński, A. Prokopiuk, B. Budner, A. Ślósarczyk, A. Zima, E. Menaszek, A. Ścisłowska-Czarnecka, K. Niedzielski, Structural studies of magnesium doped hydroxyapatite coatings after osteoblast culture, J. Mol. Struct. 977(1-3) (2010).

DOI: 10.1016/j.molstruc.2010.05.025

Google Scholar

[5] A. Farzadi, F. Bakhshi, M. Solati-Hashjin, M. Asadi-Eydivand, N.A.A. Osman, Magnesium incorporated hydroxyapatite: Synthesis and structural properties characterization, Ceram. Int. 40(4) (2014) 6021–6029.

DOI: 10.1016/j.ceramint.2013.11.051

Google Scholar

[6] V. Aina, L. Bergandi, G. Lusvardi, G. Malavasi, F.E. Imrie, I.R. Gibson, G. Cerrato, D. Ghigo, Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells, Mater. Sci. Eng. C 33(3) (2013) 1132–1142.

DOI: 10.1016/j.msec.2012.12.005

Google Scholar

[7] E. Landi, A. Tampieri, G. Celotti, S. Sprio, M. Sandri, G. Logroscino, Sr-substituted hydroxyapatites for osteoporotic bone replacement, Acta Biomater. 3 (2007) 961-969.

DOI: 10.1016/j.actbio.2007.05.006

Google Scholar

[8] S. Hesaraki, S. Farhangdoust, K. Ahmadi, R. Nemati, M. Khorami, Phase evaluation and lattice parameters of strontium/magnesium incorporated beta-tricalcium phosphate bioceramics, J. Austral. Ceram. Soc. 48(2) (2012) 166-172.

Google Scholar

[9] V. Aina, G. Lusvardi, B. Annaz, I.R. Gibson, F.E. Imrie, G. Malavasi, L. Menabue, G. Cerrato, G. Martra, Magnesium- and strontium-co-substituted hydroxyapatite: the effects of doped-ions on the structure and chemico-physical properties. J. Mater. Sci. Mater. Med. 23(12) (2012).

DOI: 10.1007/s10856-012-4767-3

Google Scholar

[10] H. Pan, X. Zhao, B.W. Darvell, W.W. Lu, Apatite-formation ability – Predictor of bioactivity", Acta Biomater. 6(11) (2010) 4181–4188.

DOI: 10.1016/j.actbio.2010.05.013

Google Scholar

[11] L. Stipniece, K. Salma-Ancane, N. Borodajenko, M. Sokolova, D. Jakovlevs, L. Berzina-Cimdina, Characterization of Mg-substituted hydroxyapatite synthesized by wet chemical method, Ceram. Int. 40 (2014) 3261-3267.

DOI: 10.1016/j.ceramint.2013.09.110

Google Scholar

[12] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15) (2006) 2907–2915.

DOI: 10.1016/j.biomaterials.2006.01.017

Google Scholar