Influence of the Strain Rate and Heat Treatment on the Mechanical Properties of Steel Sheets

Article Preview

Abstract:

The paper analyses the influence of the strain rate on the behaviour of unalloyed steels with Re 210 – 550 MPa in the deformation process. It presents and analyses the results of the influence of the strain rate ranging from 10-3 to 2.5.102 s-1 on the yield point, the tensile strength, the elongation and the reduction of area. It analyses the non-homogeneity of development of plastic deformation from both the macroscopic and microscopic points of view, as well as the influence of the strain rate on the development of plastic deformation. Since the intensity of the influence of the strain rate on the properties of materials depends on their internal structure, the tested steels are divided into three groups based on their yield point and yield point to tensile strength ratio.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

100-105

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Huh, J. H. Lim, et al., High speed tensile test of steel for the stress-strain curve at the intermediate strain rate, International Juornal of Automotive Technology 10 2 (2009) 195-204.

DOI: 10.1007/s12239-009-0023-3

Google Scholar

[2] J. Micheľ, M. Buršák, The influence of strain rate on the plasticity of steel sheets, Komunikacie 12 4 (2010) 27-32.

Google Scholar

[3] M. Német, M. Mihaliková, The effect of strain rate on the mechanical properties of automotive steel sheets, Acta Polytechnica 53 4 (2013) 384-387.

DOI: 10.14311/1839

Google Scholar

[4] W. Moćko, Z. Kowalewski, Application of FEM in the assessment of phenomena associated with dynamic investigations on a miniaturised DICT testing stand, Kovové materiály 51 1 (2013) 71-82.

DOI: 10.4149/km_2013_1_71

Google Scholar

[5] B. Hadzipasic, A. Malina, Š. Nižnik, Influence of microstructure on hydrogen diffusion and impedance of IF-steel, Kovové materiály, 50 5 (2012) 345-50.

DOI: 10.4149/km_2012_5_345

Google Scholar

[6] M. Mihaliková, M. Német, Increments of plastic strain and hardness HV10 of automotive steel sheets, Metalurgija 51 2 (2012) 449-452.

Google Scholar

[7] E. Čižmárová, M. Mihaliková, M. Német, Efect of changes deformation rate on mechanical properties microalloyed steels, Chemické listy 105 16 (2011) 546-548.

Google Scholar

[8] M. Mihaliková, M. Német, The hardness HV1 analysis of automotive steels sheets after a plastic deformation, Acta Metallurgica Slovaca 17 1 (2011) 26-31.

Google Scholar

[9] J. Slota, M. Jurčišin, E. Spišák, Experimental and numerical analysis of local mechanical properties of drawn part, Key Engineering Materials 586 (2014) 245-248.

DOI: 10.4028/www.scientific.net/kem.586.245

Google Scholar

[10] M. Mihaliková, Research of strain distribution and strain rate change in the fracture surroundings by the videoextensometric methode, Metalurgija 49 3 (2010) 161-164.

Google Scholar

[11] M. Buršák, I. Mamuzič, M. Mihaliková, Influence of blasting on mechanical properties of steel sheet, Metalurgija 43 2 (2004) 101-105.

Google Scholar

[12] J. Micheľ, M. Buršák, The influence of strain rate on the plasticity of steel sheets, Komunikacie 12 4 (2010) 27-32.

Google Scholar

[13] E. Evin, M. Tomáš, J. Výboch, Prediction of local limit deformations of steel sheets depending on deformation scheme, Chemické listy, 106 3 (2012) 401-404.

Google Scholar

[14] M. Mihaliková, J. Janek, Influence of the loading and strain rates on the strength properties and formability of higher-strength sheet, Metalurgija 46 2 (2007) 107-110.

Google Scholar

[15] E. Evin, M. Tomáš, J. Kmec, B. Katalinic, E. Wessely, The deformation properties of high strength steel sheets for auto-body components, Procedia Engineering 69 (2014) 758-767.

DOI: 10.1016/j.proeng.2014.03.052

Google Scholar

[16] E. Spišák, J. Majerníkova, J. Slota, Change of ears creation of AHSS steels after heat treatment of zinc coating, Metalurgija 53 4 (2014) 473-476.

Google Scholar

[17] E. Kormaníková, K. Kotrasová, Finite element analysis of damage modeling of fiber reinforced laminate plate, Applied Mechanics and Materials, 617 (2014 ) 247-250.

DOI: 10.4028/www.scientific.net/amm.617.247

Google Scholar

[18] E. Evin, M. Tomáš, M. Výrostek, V. Semjon, Local tribological characteristics of steel sheets for microforming , Key Engineering Materials, 586 (2014) 116-119.

DOI: 10.4028/www.scientific.net/kem.586.116

Google Scholar