[1]
D. Squarer, T. Schulenberg, D. Struwe, Y. Oka, D. Bittermann, N. Aksan, C. Maraczy, High performance light water reactor, Nucl. Eng. Des. 221 (2003) 167–180.
DOI: 10.1016/s0029-5493(02)00331-x
Google Scholar
[2]
A Technology Roadmap for Generation IV Nuclear Energy Systems, Report No. GIF002-00, 1 December, 2002. http://nuclear.gov/.
Google Scholar
[3]
K.H. Mayer, New materials for improving the efficiency of fossil-fired thermal power stations, in: International Joint Power Generation Conference, PWR, vol. 33, ASME, 1998, 831.
Google Scholar
[4]
T.R. Allen, D.C. Crawford, Fuel and materials needs for generation IV nuclear energy systems, in: Proceedings of ICAPP _03, Cordoba, Spain, 2003, American Nuclear Society, paper 3237.
Google Scholar
[5]
T.R. Allen, Workshop on Higher Temperature Materials for Advanced Nuclear Energy Systems, DOE Office of Nuclear Energy, Science and Technology, La Jolla, CA, 2002, March.
Google Scholar
[6]
X. Ren, K. Sridharan, T.R. Allen, Corrosion of ferritic–martensitic steel HT9 in supercritical water, J. Nucl. Mater. 358 (2006) 227–234.
DOI: 10.1016/j.jnucmat.2006.07.010
Google Scholar
[7]
G. Gupta, P. Ampornrat, X. Ren, K. Sridharan, T.R. Allen, G.S. Was, Role of grain boundary engineering in the SCC behavior of ferritic–martensitic alloy HT-9, J. Nucl. Mater. 361 (2007) 160–173.
DOI: 10.1016/j.jnucmat.2006.12.006
Google Scholar
[8]
R. Viswanathan, J. Sarver, J. Tanzosh, Boiler materials for ultra-supercritical coal power plants – steamside oxidation, J. Materials Engineering and Performance 15 (2006) 255–274.
DOI: 10.1361/105994906x108756
Google Scholar
[9]
J. Armitt, R. Holmes, M.I. Manning, D.B. Meadowcroft, E. Metcalfe, Spalling of steam-grown oxide from superheater and reheater tube steels, EPRI final report No. FP-686, 1978.
DOI: 10.2172/5047517
Google Scholar
[10]
Y. Chen, K. Sridharan, T. Allen, Corrosion behavior of ferritic–martensitic steel T91 in supercritical water, Corrosion Science 48 (2006) 2843–2854.
DOI: 10.1016/j.corsci.2005.08.021
Google Scholar
[11]
L. Tan, Y. Yang, T.R. Allen, Oxidation behavior of iron-based alloy HCM12A exposed in supercritical water, Corrosion Science 48 (2006) 3123–3138.
DOI: 10.1016/j.corsci.2005.10.010
Google Scholar
[12]
K. Yin, S. Qiu, R. Tang, Q. Zhang, L. Zhang, Corrosion behavior of ferritic/ martensitic steel P92 in supercritical water, J. Supercritical Fluids 50 (2009) 235–239.
DOI: 10.1016/j.supflu.2009.06.019
Google Scholar
[13]
R. Viswanathan, J. Sarver, J. Tanzosh, Boiler materials for ultra-supercritical coal power plants – steamside oxidation, J. Materials Engineering and Performance 15 (2006) 255–274.
DOI: 10.1361/105994906x108756
Google Scholar
[14]
M. Montgomery, S.A. Jensen, F. Rasmussen, T. Vilhelmsen, Fireside corrosion and steamside oxidation of 9–12%Cr martensitic steels exposed for long term testing, Corrosion Engineering, Science and Technology 44 (2009) 196–210.
DOI: 10.1179/174327809x419168
Google Scholar
[15]
M.H. Hurdus, L. Tomlinson, J.M. Titchmarsh, Observation of oscillating reaction rates during the isothermal oxidation of ferritic steels, Oxidation of Metals 34 (1990) 429–464.
DOI: 10.1007/bf00664425
Google Scholar
[16]
G.E. Totten, M.A.H. Hows, Steel Heat Treatment Handbook,Marcel Dekker, New York, 1997.
Google Scholar