IF Steel Effect of Rate Deformation on the Fracture Surface Change

Article Preview

Abstract:

Strain rate is a significant external factor and its influence on material behaviour in forming process is a function of its internal structure. In this contribution the influence of loading on the deformation IF steel is investigated using rotate hammer. To study the influence of rate deformation from 8.33 x 10-3 s-1 to 4000 s -1 to changes in the fracture of steel sheet used for bodywork components in cars. Experiments were performed on samples taken from interstitial free (IF) grade strips produced by cold rolling and hot dip galvanizing. Material strength properties were compared based on measured values, and changes to fracture surface character were observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

118-121

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Huh, J. H. Lim, et al. High speed tensile test of steel for the stress-strain curve at the intermediate strain rate, International Juornal of Automotive Technology 10 2 (2009) 195-204.

DOI: 10.1007/s12239-009-0023-3

Google Scholar

[2] M. Német, M. Mihaliková, The effect of strain rate on the mechanical properties of automotive steel sheets, Acta Polytechnica 53 4 (2013) 384-387.

DOI: 10.14311/1839

Google Scholar

[3] B. Hadzipasic, A. Malina, Š. Nižnik, Influence of microstructure on hydrogen diffusion and impedance of IF-steel, Kovové materiály, 50 5 (2012) 345-50.

DOI: 10.4149/km_2012_5_345

Google Scholar

[4] M. Mihaliková, M. Német, Increments of plastic strain and hardness HV10 of automotive steel sheets, Metalurgija 51 2 (2012) 449-452.

Google Scholar

[5] E. Čižmárová, M. Mihaliková, M. Német, Efect of changes deformation rate on mechanical properties microalloyed steels, Chemické listy 105 16 (2011) 546-548.

Google Scholar

[6] M. Mihaliková, M. Német, The hardness HV1 analysis of automotive steels sheets after a plastic deformation, Acta Metallurgica Slovaca 17 1 (2011) 26-31.

Google Scholar

[7] J. Slota, M. Jurčišin, E. Spišák, Experimental and numerical analysis of local mechanical properties of drawn part, Key Engineering Materials 586 (2014) 245-248.

DOI: 10.4028/www.scientific.net/kem.586.245

Google Scholar

[8] M. Mihaliková, Research of strain distribution and strain rate change in the fracture surroundings by the videoextensometric methode, Metalurgija 49 3 (2010) 161-164.

Google Scholar

[9] M. Buršák, I. Mamuzič, M. Mihaliková, Influence of blasting on mechanical properties of steel sheet, Metalurgija 43 2 (2004) 101-105.

Google Scholar

[10] E. Evin, M. Tomáš, et al. The deformation properties of high strength steel sheets for auto-body components, Procedia Engineering 69 (2014) 758-767.

DOI: 10.1016/j.proeng.2014.03.052

Google Scholar

[11] W. Moćko, Z. Kowalewski, Application of FEM in the assessment of phenomena associated with dynamic investigations on a miniaturised DICT testing stand, Kovové materiály 51 1 (2013) 71-82.

DOI: 10.4149/km_2013_1_71

Google Scholar

[12] E. Evin, M. Tomáš, J. Výboch, Prediction of local limit deformations of steel sheets depending on deformation scheme, Chemické listy, 106 3 (2012) 401-404.

Google Scholar

[13] E. Kormaníková, K. Kotrasová, Finite element analysis of damage modeling of fiber reinforced laminate plate, Applied Mechanics and Materials, 617 (2014 ) 247-250.

DOI: 10.4028/www.scientific.net/amm.617.247

Google Scholar