Microstructure of Agglomerate Produced with Charcoal as Substitution Fuel

Article Preview

Abstract:

Worldwide laboratory research proves that replacement of coke breeze by solid biomass in the process of agglomeration is possible [1,2,3]. One possibility of solid biomass use is the charcoal. Literature indicates that coke breeze can be replaced by charcoal up to 40% based on calorific value [4]. This paper deals with the poblems of coke breeze substitution by charcoal in laboratory conditions sintering and the impact of such substitution on the resulting agglomerate properties, i.e. microstructure. Agglomerate microstructure consists of mineralogical phases; hematite, magnetite, calcium and aluminum silico-ferrites, and silicates. Substituting coke breeze for charcoal up to 40% in the process of agglomeration, slight changes occur in the volume fractions of individual phases of the agglomerates. Volume fractions of agglomerate phases change significantly above 40% substitution by charcoal. Phase composition has an effect on the quality characteristics of the produced agglomerate. The amount of calcium and aluminum silico-ferrites influences the strength of the agglomerate [5].

You might also be interested in these eBooks

Info:

Periodical:

Pages:

122-126

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Zandi, M. Martinez-Pacheco, T. A.T. Fray, Minerals Engineering, 23 14 (2010) 1139-1145.

DOI: 10.1016/j.mineng.2010.07.010

Google Scholar

[2] M. Gan, X. Fan, X. Chen, Z. Ji, W. Lv, Y. Wang, Z. Yu, T. Jiang, ISIJ International, 52 9 (2012) 1574 – 1578.

Google Scholar

[3] R.R. Lovel, K.R. Vining, M.D. Amico, ISIJ International, 49 2 (2009) 195-202.

Google Scholar

[4] T. CH. Ooi, D. Thompson, D.R. Anderson, R. Fisher, T. Fray, M. Zandi, Combustion and Flame, 158 5 (2011) 979 – 987.

DOI: 10.1016/j.combustflame.2011.01.020

Google Scholar

[5] C. E. LOO., W. LEUNG, ISIJ International, 43 9 (2003) 1393–1402.

Google Scholar

[6] F. Kongoli, I. McBow, R. Budd, S. Llubani, A. Yazawa, Journal of Mining and Metallurgy, 46 2 (2010) 123-130.

DOI: 10.2298/jmmb1002123k

Google Scholar

[7] M. Frohlichová, J. Legemza, R. Findorák, A. Mašlejová, Archives of metallurgy and materials, 59 2 (2014) 815-820.

DOI: 10.2478/amm-2014-0139

Google Scholar

[8] J. Legemza, M. Fröhlichova, R. Findorak, SGEM 2013, 13th International Multidisciplinary Scientific Geoconference Science and Technologies in Geology, Exploration and Mining, conference proceedings 2 : 16- 22, June, (2013) Albena, Bulgaria. – Albena 649-656.

DOI: 10.5593/sgem2013/ba1.v2/s04.015

Google Scholar

[9] N. A.S. Webster, M. I. Pownceby, I. C. Madsen, Phase Formation in Iron Ore Sintering, High Temperature Processing Symposium, (2012) 10-12.

Google Scholar

[10] Y. H. YANG.: Fundamental study of pore formation in iron ore sinter and pellets In: <http://ro.uow.edu.au/cgi/viewcontent.cgi?article=2498&context=theses≻

Google Scholar

[11] M. Butkovská, Wybrane zagadnienia produkcji i zarządzania w przedsiębiorstwie, 2012, Czestochowa, Wydawnictwo Wydziału Inżynierii Procesowej, Materiałowej i Fizyki Stosowanovej, 29 (2012) 27-36.

Google Scholar