Evaluation of the Welding Zones’ Magnetic Anisotropy by Using Magnetic Barkhausen Noise

Article Preview

Abstract:

The present paper investigates the utilization of the magnetic Barkhausen noise method for the experimentally, nondestructive characterization of the magnetic anisotropy phenomenon, in a welded pipeline steel. The results shown that it is possible to distinguish the three welding zones in the curve of the anisotropy coefficient

You might also be interested in these eBooks

Info:

Periodical:

Pages:

274-277

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.S. Vlachos, Optimal ship routing based on wind and wave forecasts, Applied Numerical Analysis and Computational Mathematics, 1 No. 3, 547 (2004).

DOI: 10.1002/anac.200410018

Google Scholar

[2] D.S. Vlachos, Z.A. Anastassi and T.E. Simos, A New Family of Multistep Methods with Improved Phase Lag Characteristics for the Integration of Orbital Problems The Astronomical Journal 138 8694 (2009).

DOI: 10.1088/0004-6256/138/1/86

Google Scholar

[3] D.S. Vlachos and J.N. Avaritsiotis, Fuzzy Neural Networks for Gas Sensing, Sensors and Actuators B 33 (1996) 77.

DOI: 10.1016/0925-4005(96)01917-x

Google Scholar

[4] D.S. Vlachos, D.K. Fragoulis and J.N. Avaritsiotis, An Adaptive Neural Network Topology for Degradation Compensation of Thin Film Tin Oxide Gas Sensors, Sensors and Actuators B 43 (1998) 1.

DOI: 10.1016/s0925-4005(97)00309-2

Google Scholar

[5] D.S. Vlachos, C.A. Papadopoulos and J.N. Avaritsiotis, Characterisation of the CatalystSemiconductor Interaction Mechanism in MetalOxide Gas Sensors, Sensors and Actuators B 44 (1997) 458.

DOI: 10.1016/s0925-4005(97)00150-0

Google Scholar

[6] E. Hristoforou, Magnetostrictive Delay Lines: Engineering Theory and Sensing Applications, Meas. Sci. & Technol., 14, p. R15-R47, (2003).

DOI: 10.1088/0957-0233/14/2/201

Google Scholar

[7] E. Hristoforou, Magnetic Effects in Physical Sensor Design, J. Opt. Adv. Mat., 4, pp.245-260, (2002).

Google Scholar

[8] E. Hristoforou and R.E. Reilly, Nonuniformity in Amorphous Ribbon Delay Lines After Stress and Current Annealing, J. Appl. Phys., 69, pp.5008-5010, (1991).

DOI: 10.1063/1.348157

Google Scholar

[9] E. Hristoforou, H. Chiriac, M. Neagu, I. Darie, Sound Velocity in Magnetostrictive Amorphous Ribbons and Wires, J. Phys. D: Applied Physics, 27, pp.1595-1600, (1994).

DOI: 10.1088/0022-3727/27/8/002

Google Scholar

[10] E. Hristoforou, J. Opt. Adv. Mat., Vol. 4 (2002), p.245.

Google Scholar

[11] K. Kosmas, C. Sargentis, D. Tsamakis and E. Hristoforou: J. Mat. Proc. Tech., Vol. 161 (2005), p.359.

Google Scholar

[12] E. Hristoforou, R.E. Reilly and D. Niarchos: IEEE Trans. Magn., Vol. 29 (1993), p.3171.

Google Scholar

[13] K. Kosmas and E. Hristoforou: International J. of App. Electr. and Mech., Vol. 25 (2007), p.319.

Google Scholar

[14] E. Hristoforou: Review Article, Meas. Sci. & Technol., Vol. 14 (2003), p. R15.

Google Scholar

[15] E. Hristoforou, D. Niarchos, H. Chiriac and M. Neagu: Sensors & Actuators A, Vol. 92 (2001), p.132.

DOI: 10.1016/s0924-4247(01)00551-9

Google Scholar

[16] E. Hristoforou and K. Kosmas: Int. J. of Appl. Electrom. and Mechanics, Vol. 25 (2007), p.287.

Google Scholar

[17] E. Hristoforou and R.E. Reilly: J. Magn. Magn. Mat., Vol. 119 (1993), p.247.

Google Scholar

[18] E. Hristoforou, K. Kosmas and M. Kollar: J. Electr. Eng., Vol. 59 (2008), p.90.

Google Scholar

[19] B. Augustyniak, L. Piotrowski, M. Chmielewski, K. Kosmas and E. Hristoforou: IEEE Trans. Magn., Vol. 46 (2010), p.544.

DOI: 10.1109/tmag.2009.2033340

Google Scholar

[20] L. Piotrowski, B. Augustyniak, M. Chmielewski, E. Hristoforou and K. Kosmas: IEEE Trans. Magn., Vol. 46 (2010), p.239.

DOI: 10.1109/tmag.2009.2034020

Google Scholar

[21] G. Vértesy, I. Mészáros and I. Tomáš: NDT & E Int., Vol. 54 (2013), p.107.

Google Scholar

[22] F.A. Franco, M.F.R. González, M.F. De Campos and L.R. Padovese: J. Nondestruct. Eval., Vol. 32 (2013), p.93.

Google Scholar

[23] P. Vourna and A. Ktena: Key Eng. Mat., Vol. 495 (2011), p.257.

Google Scholar

[24] P. Vourna, A. Ktena and E. Hristoforou: IEEE Trans. Magn., Vol. 50 (2014), p.1.

Google Scholar

[25] P. Vourna, C. Hervoches, M. Vrána, A. Ktena and E. Hristoforou: IEEE Trans. Magn., DOI 10. 1109/TMAG. 2014. 2357840.

Google Scholar

[26] A. Ktena, E. Hristoforou, G.J.L. Gerhardt, F.P. Missell, F.J.G. Landgraf, Jr D.L. Rodrigues and M. Alberteris-Campos: Physica B: Coned Matter, Vol. 435 (2014), p.109.

DOI: 10.1016/j.physb.2013.09.027

Google Scholar

[27] N. Kasai, H. Koshino, K. Sekine, H. Kihira and M. Takahashi: J. Nondestruct. Eval., Vol. 32 (2013), p.277.

Google Scholar

[28] M. Blaow, J.T. Evans and B.A. Shaw: Acta Mater, Vol. 53 (2005), p.279.

Google Scholar

[29] T.W. Krause, L. Clapham, A. Pattantyus and D.L. Atherton: J. Appl. Phys, Vol. 79 (1996), p.4242.

Google Scholar

[30] C.G. Stefanita, L. Clapham, J.K. Yi and D.L. Atherton: J. Mater. Sci., Vol. 36(2001), p.2795.

Google Scholar

[31] A. Dhar, L. Clapham and D.L. Atherton: J. Mater. Sci., Vol. 37(2002), p.2441.

Google Scholar

[32] M. Caldas-Morgan and L.R. Padovese: NDT & E Int., vol. 45(2012), p.148.

Google Scholar

[33] A. Bükki-Deme, I.A. Szabó and C. Cserháti: J. Magn. Magn. Mater, Vol. 322(2010), p.1748.

Google Scholar

[34] O. Stupakov, T. Uchimoto and T. Takagi: J. Phys. D: Appl. Phys., Vol. 43(2010), art. no. 195003.

Google Scholar

[35] M. Alberteris Campos, J. Capó-Sánchez, J. Pérez Benítez and L.R. Padovese: NDT & E Int., Vol. 41(2008), p.656.

DOI: 10.1016/j.ndteint.2008.03.003

Google Scholar