Abinitio Micromagnetic Calculations in Steel with Ferromagnetic Behavior

Article Preview

Abstract:

The numerical magnetization modeling in magnetic materials is achieved by computing methods which determine the specific characteristics of each material by region and boundary conditions. Finite element method is presented, in comparison with other methods. Furthermore, there is presented the mathematical formula used, based on the minimization of the total energy density of configuration of magnetization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

282-285

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.S. Vlachos, Optimal ship routing based on wind and wave forecasts, Applied Numerical Analysis and Computational Mathematics, 1 No. 3, 547 (2004).

DOI: 10.1002/anac.200410018

Google Scholar

[2] D.S. Vlachos, SelfCalibration Techniques of Underwater Gamma Ray Spectrometers, Journal for Environmental Radioactivity 82, 21 (2005).

DOI: 10.1016/j.jenvrad.2004.11.004

Google Scholar

[3] D.S. Vlachos and A.C. Xenoulis, Gas Detection Sensitivity and Cluster Size, Nanostructured Materials, Vol. 10, No 8 (1998) 1355.

DOI: 10.1016/s0965-9773(99)00005-7

Google Scholar

[4] E. Hristoforou, Magnetostrictive Delay Lines: Engineering Theory and Sensing Applications, Meas. Sci. & Technol., 14, p. R15-R47, (2003).

DOI: 10.1088/0957-0233/14/2/201

Google Scholar

[5] I. Giouroudi, A. Ktena and E. Hristoforou, Microstructural characterization of cylindrical Fe1-xNix thin films, J. Opt. Adv. Mat., 6, pp.45-50, (2004).

Google Scholar

[6] E. Hristoforou and R.E. Reilly, Nonuniformity in Amorphous Ribbon Delay Lines After Stress and Current Annealing, J. Appl. Phys., 69, pp.5008-5010, (1991).

DOI: 10.1063/1.348157

Google Scholar

[7] E. Hristoforou, H. Chiriac, M. Neagu, I. Darie, Sound Velocity in Magnetostrictive Amorphous Ribbons and Wires, J. Phys. D: Applied Physics, 27, pp.1595-1600, (1994).

DOI: 10.1088/0022-3727/27/8/002

Google Scholar

[8] K. Kosmas, C. Sargentis, D. Tsamakis, E. Hristoforou, Non-destructive evaluation of magnetic metallic materials using Hall sensors, Journal of Materials Processing technology, 161, pp.359-362, (2005).

DOI: 10.1016/j.jmatprotec.2004.07.051

Google Scholar

[9] K. Kosmas, E. Hristoforou, The effect of magnetic anomaly detection technique in eddy current non-destructive testing, International Journal of Applied Electromagnetics and Mechanics, 25, pp.319-324, (2007).

DOI: 10.3233/jae-2007-826

Google Scholar

[10] E. Hristoforou, A. Ktena, Magnetostriction and magnetostrictive materials for sensing applications, J. Magn. Magn. Mater., 316, pp.372-378, (2007).

DOI: 10.1016/j.jmmm.2007.03.025

Google Scholar

[11] E. Hristoforou, Amorphous Magnetostrictive Wires Used in Delay Lines for Sensing Applications, J. Magn. Magn. Mater., 249, pp.387-392, (2002).

DOI: 10.1016/s0304-8853(02)00563-2

Google Scholar

[12] E. Hristoforou, K. Kosmas, Magnetostrictive delay lines for non-destructive testing, International Journal of Applied Electromagnetics and Mechanics, 25, pp.287-296, (2007).

DOI: 10.3233/jae-2007-794

Google Scholar

[13] E. Hristoforou, D. Niarchos, H. Chiriac, M. Neagu, Non Destructive Evaluation Distribution Sensors Based on Magnetostrictive Delay Lines, Sensors & Actuators A, 92, pp.132-136, (2001).

DOI: 10.1016/s0924-4247(01)00551-9

Google Scholar

[14] E. Hristoforou and R.E. Reilly, Tensile Stress Distribution Sensors Based on Amorphous Alloys, J. Magn. Magn. Mat., 119, pp.247-253, (1993).

DOI: 10.1016/0304-8853(93)90408-t

Google Scholar

[15] E. Hristoforou, K. Kosmas, M. Kollar, Surface magnetic non destructive evaluation using permeability sensor based on the MDL technique, Journal of Electrical Engineering, 59, pp.90-93, (2008).

Google Scholar

[16] B. Augustyniak, L. Piotrowski, M. Chmielewski, K. Kosmas, E. Hristoforou, Barkhausen Noise Properties Measured by Different Methods for Deformed Armco Samples, IEEE Trans. Mag., 46, pp.544-547, (2010).

DOI: 10.1109/tmag.2009.2033340

Google Scholar

[17] L. Piotrowski, B. Augustyniak, M. Chmielewski, EV Hristoforou, K Kosmas, Evaluation of Barkhausen Noise and Magnetoacoustic Emission Signals Properties for Plastically Deformed Armco Iron, IEEE Trans. Mag., 46, pp.239-242, (2010).

DOI: 10.1109/tmag.2009.2034020

Google Scholar

[18] A. Ktena, E. Hristoforou, Stress Dependent Magnetization and Vector Preisach Modeling in Low Carbon Steels, IEEE Transactions on Magnetics, 48, pp.1433-1436, (2012).

DOI: 10.1109/tmag.2011.2172786

Google Scholar

[19] W. F. Brown, Micromagnetics, Interscience, New York, (1963).

Google Scholar

[20] D. R. Fredkin and T. R. Koehler, Abinitio micromagnetic calculations for particles, Journal of Applied Physics 67, 5544 (1990).

Google Scholar

[21] W. Rave, K. Ramstock, Micromagnetic calculations of the grain size dependence of remanence and coercivity in nanocrystalline permanent magnets, Journal of Magnetism and Magnetic Materials, 171 (1997) 69-82.

DOI: 10.1016/s0304-8853(97)00066-8

Google Scholar

[22] A. Hubert, R. Schafer, Magnetic Domains: The Analysis of Magnetic Microstructures.

Google Scholar

[23] Wenjie Chen, D. R. Fredkin and T. R. Koehler, A new finite element method in Micromagnetics, IEEE Trans. Magn. 29 (1993).

DOI: 10.1109/20.221033

Google Scholar