[1]
O.D. Velev, B.G. Prevo, K.H. Bhatt, On-chip manipulation of free droplets, Nature 426 (6966) (2003) 515–516.
DOI: 10.1038/426515a
Google Scholar
[2]
S. -Y. Teh, R. Lin, L. -H. Hung, A.P. Lee, Droplet microfluidics, Lab Chip 8 (2) (2008) 198.
Google Scholar
[3]
Y. Matsubara, K. Kerman, M. Kobayashi, S. Yamamura, Y. Morita, Y. Takamura, E. Tamiya, On-chip nanoliter-volume multiplex TaqMan polymerase chain reaction from a single copy based on counting fluorescence released microchambers, Anal. Chem. 76 (21) (2004).
DOI: 10.1021/ac0497149
Google Scholar
[4]
H. Ding, S. Sadeghi, G.J. Shah, S. Chen, P.Y. Keng, C.J. Kim, R.M. Van Dam, Accurate dispensing of volatile reagents on demand for chemical reactions in EWOD chips, Lab Chip-Miniaturisation Chem. Biol. 12 (18) (2012) 3331-3340.
DOI: 10.1039/c2lc40244k
Google Scholar
[5]
M.A. Khorshidi, P.K.P. Rajeswari, C. Wählby, H.N. Joensson, H.A. Svahn. Automated analysis of dynamic behavior of single cells in picoliter droplets, Lab Chip 14 (2014) 931-937.
DOI: 10.1039/c3lc51136g
Google Scholar
[6]
S.L. Sjostrom, Y.P. Bai, M.T. Huang, Z.H. Liu, J. Nielsen, H.N. Joensson, H.A. Svahn, High-throughput screening for industrial enzyme production hosts by droplet microfluidics, Lab Chip, 14(2014) 806-813.
DOI: 10.1039/c3lc51202a
Google Scholar
[7]
S. Guha, S.L. Perry, A.S. Pawate, P.J.A. Kenis. Sens. Actuators B, Fabrication of X-ray compatible microfluidic platforms for protein crystallization 174(2012) 1-9.
DOI: 10.1016/j.snb.2012.08.048
Google Scholar
[8]
D.Y. Liu, G.T. Liang, X.X. Lei, B. Chen, W. Wang, X.M. Zhou, Highly efficient capillary polymerase chain reaction using an oscillation droplet microreactor, Anal. Chim. Acta 718(2012) 58-63.
DOI: 10.1016/j.aca.2011.12.066
Google Scholar
[9]
T.D. Rane, H.C. Zec, C. Puleo, A.P. Lee, T.H. Wang., Droplet microfluidics for amplification-free genetic detection of single cells, Lab chip, 12(2012) 3341-3347.
DOI: 10.1039/c2lc40537g
Google Scholar
[10]
T. Thorsen, R.W. Robert, F.H. Arnold, S.R. Quake, Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett. 86(2001) 4163-4166.
DOI: 10.1103/physrevlett.86.4163
Google Scholar
[11]
A. Gupta, H.S. Matharoo, D. Makkar, R. Kumar, Droplet formation via squeezing mechanism in a microfluidic flow-focusing device, Computers & Fluids 100(2014) 218-226.
DOI: 10.1016/j.compfluid.2014.05.023
Google Scholar
[12]
A. Kang, J. Park, J. Ju, G.S. Jeong, S.H. Lee, Cell encapsulation via microtechnologies, Biomaterials 35(2014) 2651-2663.
DOI: 10.1016/j.biomaterials.2013.12.073
Google Scholar
[13]
Y. Shi, G.H. Tang, H.H. Xia, Lattice Boltzmann simulation of droplet formation in T-junction and flow focusing devices, Computers & Fluids 90(2014) 155-163.
DOI: 10.1016/j.compfluid.2013.11.025
Google Scholar
[14]
A.R. Abate, C.H. Chen, J.J. Agresti, D.A. Weitz, Beating Poisson encapsulation statistics using close-packed ordering, Lab Chip 9(2009) 2628-2631.
DOI: 10.1039/b909386a
Google Scholar
[15]
J.F. Edd, D.D. Carlo, K.J. Humphry, S. Koster, D. Irimia, D.A. Weitz, M. Toner, Controlled encapsulation of single-cells into monodisperse picolitre drops, Lab Chip 8(2008) 1262-1264.
DOI: 10.1039/b805456h
Google Scholar
[16]
S.Q. Gu, Y.X. Zhang, Y. Zhu, W.B. Du, B. Yao, Q. Fang, Multifunctional picoliter droplet manipulation platform and its application in single cell analysis, Anal. Chem. 83(2011) 7570-7576.
DOI: 10.1021/ac201678g
Google Scholar
[17]
W.B. Du, M. Sun, S.Q. Gu, Y. Zhu, Q. Fang, Automated microfluidic screening assay platform based on dropLab, Anal. Chem. 82(2010) 9941-9947.
DOI: 10.1021/ac1020479
Google Scholar
[18]
W.Y. Zhang, L.Y. Hou, Method, apparatus and application of affecting fluid flow, China: ZL03152948. 8 (2006) (in Chinese).
Google Scholar
[19]
H.C. Wang, L.Y. Hou, W.Y. Zhang, A drop-on-demand droplet generator for coating catalytic materials onmicrohotplates of micropellistor Sens. Actuators B, 183(2013) 342-349.
DOI: 10.1016/j.snb.2013.03.130
Google Scholar