Controlled Encapsulation of Micron-Sized Beads in a Droplet Based on Pulse Inertia Force Driving of Micro-Fluids

Article Preview

Abstract:

Loading drops with discrete objects, such as particles and cells, is often necessary when performing chemical and biological assays in microfluidic devices. The vast majority of reported encapsulating methods of particles into monodisperse picolitre droplets are based on micro-fluidic chip using the standard soft lithography technique are necessary. This paper presents a new approach, not based on micro-fluidic chip, for encapsulating particles into droplets actuated by microfluidic pulse inertia force. The polystyrene bead suspension can be ejected out of a tapered glass capillary in mineral oil drop by drop actuated by an enough pulse inertia force which is produced by a hollow PZT stack. The polystyrene beads will be randomly encapsulated in monodisperse picolitre droplets. The tapered glass capillary has the advantages of good chemical resistance, low friction, easy to manufacture and low cost and is suitable for chemical and biological analysis. The minimum size of the spherical droplets can reach 12 μm in diameter and about 1 picolitre in volume. The percentage of the droplets with single 5 μm-diameter polystyrene bead can reach 40% when the droplet size is 40 μm and the concentration of the bead suspension is 1×107 beads per milliliter. The experiment result can be applied in droplet-based single cell encapsulating and analyzing.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

1009-1015

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O.D. Velev, B.G. Prevo, K.H. Bhatt, On-chip manipulation of free droplets, Nature 426 (6966) (2003) 515–516.

DOI: 10.1038/426515a

Google Scholar

[2] S. -Y. Teh, R. Lin, L. -H. Hung, A.P. Lee, Droplet microfluidics, Lab Chip 8 (2) (2008) 198.

Google Scholar

[3] Y. Matsubara, K. Kerman, M. Kobayashi, S. Yamamura, Y. Morita, Y. Takamura, E. Tamiya, On-chip nanoliter-volume multiplex TaqMan polymerase chain reaction from a single copy based on counting fluorescence released microchambers, Anal. Chem. 76 (21) (2004).

DOI: 10.1021/ac0497149

Google Scholar

[4] H. Ding, S. Sadeghi, G.J. Shah, S. Chen, P.Y. Keng, C.J. Kim, R.M. Van Dam, Accurate dispensing of volatile reagents on demand for chemical reactions in EWOD chips, Lab Chip-Miniaturisation Chem. Biol. 12 (18) (2012) 3331-3340.

DOI: 10.1039/c2lc40244k

Google Scholar

[5] M.A. Khorshidi, P.K.P. Rajeswari, C. Wählby, H.N. Joensson, H.A. Svahn. Automated analysis of dynamic behavior of single cells in picoliter droplets, Lab Chip 14 (2014) 931-937.

DOI: 10.1039/c3lc51136g

Google Scholar

[6] S.L. Sjostrom, Y.P. Bai, M.T. Huang, Z.H. Liu, J. Nielsen, H.N. Joensson, H.A. Svahn, High-throughput screening for industrial enzyme production hosts by droplet microfluidics, Lab Chip, 14(2014) 806-813.

DOI: 10.1039/c3lc51202a

Google Scholar

[7] S. Guha, S.L. Perry, A.S. Pawate, P.J.A. Kenis. Sens. Actuators B, Fabrication of X-ray compatible microfluidic platforms for protein crystallization 174(2012) 1-9.

DOI: 10.1016/j.snb.2012.08.048

Google Scholar

[8] D.Y. Liu, G.T. Liang, X.X. Lei, B. Chen, W. Wang, X.M. Zhou, Highly efficient capillary polymerase chain reaction using an oscillation droplet microreactor, Anal. Chim. Acta 718(2012) 58-63.

DOI: 10.1016/j.aca.2011.12.066

Google Scholar

[9] T.D. Rane, H.C. Zec, C. Puleo, A.P. Lee, T.H. Wang., Droplet microfluidics for amplification-free genetic detection of single cells, Lab chip, 12(2012) 3341-3347.

DOI: 10.1039/c2lc40537g

Google Scholar

[10] T. Thorsen, R.W. Robert, F.H. Arnold, S.R. Quake, Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett. 86(2001) 4163-4166.

DOI: 10.1103/physrevlett.86.4163

Google Scholar

[11] A. Gupta, H.S. Matharoo, D. Makkar, R. Kumar, Droplet formation via squeezing mechanism in a microfluidic flow-focusing device, Computers & Fluids 100(2014) 218-226.

DOI: 10.1016/j.compfluid.2014.05.023

Google Scholar

[12] A. Kang, J. Park, J. Ju, G.S. Jeong, S.H. Lee, Cell encapsulation via microtechnologies, Biomaterials 35(2014) 2651-2663.

DOI: 10.1016/j.biomaterials.2013.12.073

Google Scholar

[13] Y. Shi, G.H. Tang, H.H. Xia, Lattice Boltzmann simulation of droplet formation in T-junction and flow focusing devices, Computers & Fluids 90(2014) 155-163.

DOI: 10.1016/j.compfluid.2013.11.025

Google Scholar

[14] A.R. Abate, C.H. Chen, J.J. Agresti, D.A. Weitz, Beating Poisson encapsulation statistics using close-packed ordering, Lab Chip 9(2009) 2628-2631.

DOI: 10.1039/b909386a

Google Scholar

[15] J.F. Edd, D.D. Carlo, K.J. Humphry, S. Koster, D. Irimia, D.A. Weitz, M. Toner, Controlled encapsulation of single-cells into monodisperse picolitre drops, Lab Chip 8(2008) 1262-1264.

DOI: 10.1039/b805456h

Google Scholar

[16] S.Q. Gu, Y.X. Zhang, Y. Zhu, W.B. Du, B. Yao, Q. Fang, Multifunctional picoliter droplet manipulation platform and its application in single cell analysis, Anal. Chem. 83(2011) 7570-7576.

DOI: 10.1021/ac201678g

Google Scholar

[17] W.B. Du, M. Sun, S.Q. Gu, Y. Zhu, Q. Fang, Automated microfluidic screening assay platform based on dropLab, Anal. Chem. 82(2010) 9941-9947.

DOI: 10.1021/ac1020479

Google Scholar

[18] W.Y. Zhang, L.Y. Hou, Method, apparatus and application of affecting fluid flow, China: ZL03152948. 8 (2006) (in Chinese).

Google Scholar

[19] H.C. Wang, L.Y. Hou, W.Y. Zhang, A drop-on-demand droplet generator for coating catalytic materials onmicrohotplates of micropellistor Sens. Actuators B, 183(2013) 342-349.

DOI: 10.1016/j.snb.2013.03.130

Google Scholar