[1]
Javey A., Guo J., Farmer D., et al, Self-Aligned Ballistic Molecular Transistors and Electrically Parallel Nanotube Arrays, Nano Lett. 4 (2004) 1319–1322.
DOI: 10.1021/nl049222b
Google Scholar
[2]
Huang Y., Duan X. F., Cui Y., et al, Gallium Nitride Nanowire Nano devices, Nano Lett. 2 (2002) 101–104.
DOI: 10.1021/nl015667d
Google Scholar
[3]
Duan X. F., Huang Y., Cui Y., et al, Indium Phosphide Nanowires as blocks for Nanoscale Electronic and Optoelectronic Devices, Nature. 409 (2001) 66–69.
DOI: 10.1038/35051047
Google Scholar
[4]
Barrelet C. J., Greytak A. B., Lieber C. M, Nanowire Photonic Circuit Elements, Nano Lett. 4 (2004) 1981–(1985).
DOI: 10.1021/nl048739k
Google Scholar
[5]
H. Pan, Y. P. Feng, Semiconductor Nanowires and Nanotubes: Effects of Size and Surface-to-Volume Ratio, ACS NANO. 2 (2008) 2410-2414.
DOI: 10.1021/nn8004872
Google Scholar
[6]
Chen Y. J., Tong Z. F., Luo L. J., Boron Nitride Nanowires Produced on Commercial Stainless Steel foil, Chin. J. Chem. Eng. 16 (2008) 485-487.
DOI: 10.1016/s1004-9541(08)60110-x
Google Scholar
[7]
Chen Y. J., Chi B., D. C Mahon, An effective approach to grow boron nitride nanowires directly on stainless-steel substrates, Nanotechnology. 17 (2006) 2942-2946.
DOI: 10.1088/0957-4484/17/12/020
Google Scholar
[8]
Li L. ,Li L.H., Chen Y., et al, Mechanically activated catalyst mixing for high-yield boron nitride nanotube growth, Nanoscale Research Letters. 7 (2012) 417.
DOI: 10.1186/1556-276x-7-417
Google Scholar
[9]
Li L.H., et al. High yield BNNTs synthesis by promotion effect of milling-assisted precursor, Microelectronic Engineering. 110 (2013) 256-259.
DOI: 10.1016/j.mee.2013.01.044
Google Scholar
[10]
Liu X. W., Li L., J. Dai, et al. Synthesis of High Density Boron Nitride Nanotube Film, Key Engineering Materials. 562-565 (2013) 926-929.
DOI: 10.4028/www.scientific.net/kem.562-565.926
Google Scholar
[11]
Li L. ,Li L.H., Chen Y., et al, High Quality Boron Nitride Nanoribbons: Unzipping during Nanotube Synthesis, Angewandte Chemie-International Edition. 52 (2013) 4212-4216.
DOI: 10.1002/anie.201209597
Google Scholar
[12]
Nag. A., Raidongia. K., Hembram. K. P. S. S., Graphene Analogues of BN: Novel Synthesis and Properties, ACS Nano. 4 (2010) 1539−1544.
DOI: 10.1021/nn9018762
Google Scholar
[13]
Zeng H. B., Zhi C.Y., Zhang Z.H., et al. White Graphenes,: Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping, Nano Lett. 10 (2010) 5049–5055.
DOI: 10.1021/nl103251m
Google Scholar
[14]
Li L.H., Li C.P., Chen Y., Synthesis of boron nitride nanotubes, bamboos and nanowires, Physica E. 40 (2008) 2513-2516.
DOI: 10.1016/j.physe.2007.06.065
Google Scholar
[15]
Huo K. F., Hu Z., Chen F., et al, Synthesis of boron nitride nanowires, Appl. Phys. Lett. 80 (2002) 3611-3613.
Google Scholar
[16]
C. Attaccalite, L. Wirtz, A. Marini, et al, Efficient Gate-tunable light-emitting device made of defective boron nitride nanotubes: from ultraviolet to the visible, Scientific Reports. 3 (2013) 2698-1-2698-7.
DOI: 10.1038/srep02698
Google Scholar
[17]
Augustinus M. Goossens, Stefanie C. M. Driessen, Tim A. Baart, et al. Gate-Defined Confinement in Bilayer Graphene-Hexagonal Boron Nitride Hybrid Devices, Nano Lett. 12 (2012) 4656−4660.
DOI: 10.1021/nl301986q
Google Scholar
[18]
Yu Y.L., Chen H., Liu Y., et al. Humidity sensing properties of single Au-decorated boron nitride nanotubes, Electrochemistry Communications. 30 (2013) 29–33.
DOI: 10.1016/j.elecom.2013.01.026
Google Scholar
[19]
Huang, Q., Bando, Y., Zhao, L. P., et al, pH Sensor Based on Boron Nitride Nanotube, Nanotechnology. 20 (2009) 415501.
DOI: 10.1088/0957-4484/20/41/415501
Google Scholar
[20]
Wu J.M., Yin L.W., Platinum Nanoparticle Modified Polyaniline-Functionalized Boron Nitride Nanotubes for Amperometric Glucose Enzyme Biosensor, ACS Appl. Mater. Interfaces. 3 (2011) 4354–4362.
DOI: 10.1021/am201008n
Google Scholar
[21]
Chen C. W., Lee M. H., Clark, S. J, Band Gap Modification of Single-Walled Carbon Nanotube and Boron Nitride Nanotube under a Transverse Electric Field, Nanotechnology. 15 (2004) 1837.
DOI: 10.1088/0957-4484/15/12/025
Google Scholar
[22]
Cho, Y. J., Kim, C. H., Kim, H. S., et al, Electronic Structure of Si-Doped BN Nanotubes Using X-ray Photoelectron Spectroscopy and First Principles Calculations, Chem. Mater. 21 (2009) 136–143.
DOI: 10.1021/cm802559m
Google Scholar
[23]
Li Y. F., Zhou Z., Golberg D., et al, Stone-Wales Defects in Single-Walled Boron Nitride Nanotubes: Formation Energies, Electronic Structures, and Reactivity, J. Phys. Chem. C. 112 (2008) 1365–1370.
DOI: 10.1021/jp077115a
Google Scholar
[24]
Wang Z. G., Li Z., Cheng D. M, Effects of Uniaxial Strain on the Band Structure of Boron Nitride Nanotubes: A First Principle Study, Eur. Phys. J. 69 (2009) 20601.
DOI: 10.1051/epjap/2009037
Google Scholar
[25]
Wang R. X., Zhu R. X., Zhang D. J, Adsorption of Fomaldehyde Molecule on the Pristine and Silicon Doped Boron Nitride Nanotubes, Chem. Phys. Lett. 467 (2008) 131–135.
DOI: 10.1016/j.cplett.2008.11.002
Google Scholar
[26]
Chen W., Li Y.F., Yu G. T., et al, Electronic Structure and Reactivity of Boron Nitride Nanoribbons with Stone-Wales Defects, J. Chem. Theory Comput. 5 (2009) 3088–3095.
DOI: 10.1021/ct900388x
Google Scholar
[27]
Tang P. Z., Zou X. L., Wang S. Y., et al, Electronic and magnetic properties of boron nitride nanoribbons with topological line defects, RSC Adv. 2 (2012) 6192-6199.
DOI: 10.1039/c2ra20306e
Google Scholar