Analysis of Harmonic Distortion of Sigma-Delta Modulator

Article Preview

Abstract:

In this paper, the harmonic distortion of fourth-order sigma-delta modulator is analyzed. Based on the analysis non-ideal models are established and simulation results demonstrated the validity of these models. The non-linear capacitors introduce harmonic distortion and the non-linear on-resistance nearly only introduce second order harmonic distortion. The non-ideal integrators can increase the noise floor of the modulator.The fully-differential topology can be adopted to eliminate even order harmonic distortion and the operational amplifier with high performance can also be used to decrease noise floor of the modulator.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

980-985

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Van De Plassche. Integrated analog-to-digital and digital-to-analog converters[M]. Norwell MA: Kluwer Academic Publisher, (1994).

DOI: 10.1007/978-1-4615-2748-0

Google Scholar

[2] Xu Jian, Analysis of high resolution and high performance of ΣΔ modulator [D]. ZheJiang University, HangZhou, ZheJiang. (2012).

Google Scholar

[3] J. C. Candy and G. C. Temes. Oversampling delta-sigma data converters, theory, design and simulation[M]. New York: IEEE Press, (1992).

DOI: 10.1109/9780470545461

Google Scholar

[4] S. R. Norsworthy, R. Schreier, and G. C. Temes. Sigma Data Converters Theory, Design, and Simulation[M]. New York: IEEE Press, (1997).

Google Scholar

[5] B. Brandt, P.F. Ferguson, and M. Rebeschini, Analog Circuit Design of sigma-delta ADCs, Chapter 11 in Delta-Sigma Data Converters: Theory, Design and Simulation (S.R. Norsworthy, R. Schreier, and G.C. Temes, Editors). IEEE Press, (1997).

DOI: 10.1007/978-94-007-0391-9_7

Google Scholar

[6] Behzad Razavi. Design of Analog CMOS Integrated Circuits[M]. Xian Jiaotong University Press. 2011: 337-340.

Google Scholar

[7] Fu-Chuang Chen and Chih-Lung Hsieh. Modeling Harmonic Distortions Caused by Nonlinear Op-Amp DC Gain for Switched-Capacitor Sigma–Delta Modulators [J]. IEEE transactions on circuits and systems—II: express briefs, 2009, 56(9): 694-698.

DOI: 10.1109/tcsii.2009.2027956

Google Scholar

[8] Hashem Zare-Hoseini, Izzet Kale, and Omid Shoaei. Modeling of Switched- Capacitor Delta–Sigma Modulators in SIMULINK[J]. IEEE transactions on instrumnetation and measurement, vol. 54, pp.1646-1654, August (2005).

DOI: 10.1109/tim.2005.851085

Google Scholar

[9] W.M.C. Sansen, H. Qiuting, and K.A.I. Halonen, Transient Analysis of Charge Transfer in SC Filters-Gain Error and Distortion[J]. IEEE Journal of Solid-State Circuits, vol. 22, pp.268-276, April (1987).

DOI: 10.1109/jssc.1987.1052712

Google Scholar

[10] V.F. Dias, G. Palmisano, P. O'Leary, and F. Maloberti, Fundamental Limitations of Switched-Capacitor Sigma-Delta Modulators[J]. IEEE Proceedings-G, vol. 139, pp.27-32, February (1992).

DOI: 10.1049/ip-g-2.1992.0006

Google Scholar

[11] L.A. Williams and B.A. Wooley, A Third-Order Sigma-Delta Modulator with Extended Dynamic Range[J]. IEEE Journal of Solid-State Circuits, vol. 29, pp.193-202, March (1994).

DOI: 10.1109/4.278340

Google Scholar

[12] F. Medeiro, B. Pérez-Verdú, and A. Rodríguez-Vázquez, Top-Down Design of High-Performance Modulators[M]. Kluwer Academic Publishers, (1999).

DOI: 10.1007/978-1-4757-3003-6

Google Scholar