[1]
YAN Zhen, HE Qing. Performance Analysis on Incentive Environment of Micro Cantilever Piezoelectric Vibration Generator [J]. Proceedings of the CSEE, 2011, 31(30): 140-145.
Google Scholar
[2]
YANG Jin, WEN Yumei, LI Ping, et al. A new Magnetoelectric Broadband Vibration Energy Harvester [J]. Chinese Journal of Scientific Instrument, 2012, 33(12): 2863-2868.
DOI: 10.1109/icsens.2010.5690026
Google Scholar
[3]
ZHU Liya, CHEN Renwen, LEI Xia. Current Status and Development Trends of Vibration-based Piezoelectric Generator [J]. China Mechanical Engineering, 2011. 22(24): 3016-3022.
Google Scholar
[4]
ZHAO Zhigang, DING Xusheng, LIU Fugui, et al. Structural Design and Simulation of Micro Electromagnetic Vibration Energy Harvester [J]. Transactions of China Electrotechnical Society, 2012, 27(8): 255-260.
Google Scholar
[5]
HOU Zhiwei, CHEN Renwen, LIU Jianxiang. Optimization Design of Multi-direction Piezoelectric Vibration Energy Harvester [J]. Journal of Vibration and Shock, 2012, 31(16): 33-37.
Google Scholar
[6]
JEFFREY L. KAUFFMAN AND GEORGE A. LESIEUTRE. A Low-order Model for the Design of Piezoelectric Energy Harvesting Devices [J]. Journal of Intelligent Material Systems and Structures, 2009, 20(5): 495-503.
DOI: 10.1177/1045389x08101559
Google Scholar
[7]
Kanwar Bharat Singh, Vishwas Bedekar, Saied Taheri, et al. Piezoelectric Vibration Energy Harvesting System With an Adaptive Frequency Tuning Mechanism for Intelligent Tires[J]. Mechatronics, 2012, (22): 970-988.
DOI: 10.1016/j.mechatronics.2012.06.006
Google Scholar
[8]
ZOU Yuwei, HUNG Xueliang, TAN Linlin. First-order Resonance Frequency and Power Output of a Cantilever Piezoelectric Generator [J]. Journal of Southeast University (Natural Science Edition), 2011, 41(6): 1177-1181.
Google Scholar
[9]
Cuong P Le, Einar Halvorsen, Oddvar Søra°sen, et al. Microscale Electrostatic Energy Harvester Using Internal Impacts [J]. Journal of Intelligent Material Systems and Structures, 2012, 23(13): 1409-1421.
DOI: 10.1177/1045389x12436739
Google Scholar
[10]
David A. W. Barton, Stephen G. Burrow, Lindsay R. Clare. Energy Harvesting From Vibrations with a Nonlinear Oscillator [J]. Journal of Vibration and Acoustics, 2010, 132(6): 1-7.
DOI: 10.1115/1.4000809
Google Scholar
[11]
B.P. Mann, N.D. Sims. Energy Harvesting From the Nonlinear Oscillations of Magnetic Levitation [J]. Journal of Sound and Vibration, 2009, (319): 515-530.
DOI: 10.1016/j.jsv.2008.06.011
Google Scholar
[12]
Mohamed M.R. El-Hebear, Mustafa H. Arafa, Said M. Megahed. Modeling and Experimental Verification of Multi-modal Vibration Energy Harvesting From Plate Structures [J]. Sensors and Actuators A, 2013, (193): 35-47.
DOI: 10.1016/j.sna.2013.01.006
Google Scholar
[13]
I.N. Ayala-Garcia, P.D. Mitcheson, E.M. Yeatman, et al. Magnetic Tuning of a Kinetic Energy Harvester Using Variable Reluctance [J]. Sensors and Actuators A, 2013, (189): 266-275.
DOI: 10.1016/j.sna.2012.11.004
Google Scholar
[14]
Po-Cheng Huang, Tung-Hsiang Tsai, Yao-Joe Yang. Wide-bandwidth Piezoelectric Energy Harvester Integrated with Parylene-C Beam Structures [J]. Microelectronic Engineering, 2013, (111): 214-219.
DOI: 10.1016/j.mee.2013.03.158
Google Scholar
[15]
FrancescoDiMonaco, MaryamGhandchiTehrani, StephenJ. Elliott, et al. Energy Harvesting Using Semi-active Control [J]. Journal of Sound and Vibration, 2013, (332): 6033-6043.
DOI: 10.1016/j.jsv.2013.06.005
Google Scholar
[16]
Jedol Dayou, W.Y.H. Liew, Man-SangChow. Increasing the Bandwidth of the Width-split Piezoelectric Energy Harvester [J]. Microelectronics Journal, 2012, (43): 484-491.
DOI: 10.1016/j.mejo.2012.03.012
Google Scholar
[17]
Roszaidi Ramlan, Michael J Brennan, Brian R Mace, et al. On the Performance of a Dual-mode Non-linear Vibration Energy Harvesting Device [J]. Journal of Intelligent Material Systems and Structures, 2012, 23(13): 1423-1432.
DOI: 10.1177/1045389x12443017
Google Scholar
[18]
Lihua Tang, Yaowen Yang and Chee-Kiong Soh. Improving Functionality of Vibration Energy Harvesters Using Magnets [J]. Journal of Intelligent Material Systems and Structures, 2012, 23(13): 1433-1449.
DOI: 10.1177/1045389x12443016
Google Scholar
[19]
M.A. Acar, C. Yilmaz. Design of an Adaptive–passive Dynamic Vibration Absorber Composed of a String–mass System Equipped with Negative Stiffness Tension Adjusting Mechanism [J]. Journal of Sound and Vibration, 2013, (332): 231-245.
DOI: 10.1016/j.jsv.2012.09.007
Google Scholar
[20]
W Q Liu, A Badel, F Formosa, et al. Novel Piezoelectric Bistable Oscillator Architecture for Wideband Vibration Energy Harvesting [J]. Smart Materials and Structures, 2013, (22): 1-11.
DOI: 10.1088/0964-1726/22/3/035013
Google Scholar
[21]
Einar Halvorsen. Fundamental Issues in Nonlinear Wideband-vibration Energy Harvesting [J]. Physical Review, 2013, (87): 0421291-6.
DOI: 10.1103/physreve.87.042129
Google Scholar
[22]
Erturk A and Inman D J . Broadband Piezoelectric Power Generation on High-energy Orbits of the Bistable Duffing Oscillator with Electromechanical Coupling[J]. Journal of Sound and Vibration, 2011, 330 2339–53.
DOI: 10.1016/j.jsv.2010.11.018
Google Scholar
[23]
M.N. Fakhzan, Asan G.A. Muthalif. Harvesting Vibration Energy Using Piezoelectric Material: Modeling, Simulation and Experimental Verifications [J]. Mechatronics, 2013, (23): 61-66.
DOI: 10.1016/j.mechatronics.2012.10.009
Google Scholar
[24]
Özge Zorlu, Haluk Külah. A MEMS-based Energy Harvester for Generating Energy From Non-resonant Environmental Vibrations [J]. Sensors and Actuators A, 2013, (202): 124-134.
DOI: 10.1016/j.sna.2013.01.032
Google Scholar
[25]
ZHAO Jian. A Study on Threshold Acceleration Switches Based on Bistable Characteristic[D]. Xian: Xidian University, (2008).
Google Scholar
[26]
CHEN Zhongsheng, YANG Yongming. Stochastic Resonance Mechanism for Wideband and low Frequency Vibration Energy Harvesting Based on Piezoelectric Cantilever Beams [J]. Acta Physica Sinica, 2011, 60(7): 074301-074306.
DOI: 10.7498/aps.60.074301
Google Scholar
[27]
SUN Shu, CAO Shuqian. Dynamic Modeling and Analysis of a Bistable Piezoelectric Cantilever power generation System [J]. Acta Physica Sinica, 2012, 61(21): 2105051-21050511.
DOI: 10.7498/aps.61.210505
Google Scholar
[28]
Bin Tang , M.J. Brennan. On the shock performance of a nonlinear vibration isolator with high-static-low-dynamic-stiffness [J]. International Journal of Mechanical Sciences, 2014, (81): 207-214.
DOI: 10.1016/j.ijmecsci.2014.02.019
Google Scholar
[29]
Waleed Al-Ashtari, Matthias Hunstig, Tobias Hemsel, et al. Enhanced energy harvesting using multiple piezoelectric elements: Theory and experiments [J]. Sensors and Actuators A, 2013, (200): 138-146.
DOI: 10.1016/j.sna.2013.01.008
Google Scholar
[30]
M. Ferrari, V. Ferrari, M. Guizzetti et al. A Single-magnet Nonlinear Piezoelectric Converter for Enhanced Energy Harvesting from Random Vibrations [J]. Procedia Engineering, 2010, (5): 1156-1159.
DOI: 10.1016/j.proeng.2010.09.316
Google Scholar