Dynamic Modeling and Output Characteristic Analysis of a Micro Bistable Piezoelectric Generator

Article Preview

Abstract:

For effectively harvesting the broadband and low-frequency vibration energies in real environment, a micro bistable piezoelectric generator, without containing magnet, is designed. On the basis of analysis the nonlinear behavior of the stiffness, damping and the electromechanical coupling coefficient about the bistable vibration system, a precise mechanical-electric transfer model is built. The output characteristic of the piezoelectric generator is simulated and tested. The results showed that the piezoelectric generator can effectively harvest the broadband and low frequency vibration energies. And the output voltage can meet the electricity demand of a wireless sensor network node. The structure of the piezoelectric generator does not contain magnets, and it is easy to realize miniaturization and integration.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

995-1003

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] YAN Zhen, HE Qing. Performance Analysis on Incentive Environment of Micro Cantilever Piezoelectric Vibration Generator [J]. Proceedings of the CSEE, 2011, 31(30): 140-145.

Google Scholar

[2] YANG Jin, WEN Yumei, LI Ping, et al. A new Magnetoelectric Broadband Vibration Energy Harvester [J]. Chinese Journal of Scientific Instrument, 2012, 33(12): 2863-2868.

DOI: 10.1109/icsens.2010.5690026

Google Scholar

[3] ZHU Liya, CHEN Renwen, LEI Xia. Current Status and Development Trends of Vibration-based Piezoelectric Generator [J]. China Mechanical Engineering, 2011. 22(24): 3016-3022.

Google Scholar

[4] ZHAO Zhigang, DING Xusheng, LIU Fugui, et al. Structural Design and Simulation of Micro Electromagnetic Vibration Energy Harvester [J]. Transactions of China Electrotechnical Society, 2012, 27(8): 255-260.

Google Scholar

[5] HOU Zhiwei, CHEN Renwen, LIU Jianxiang. Optimization Design of Multi-direction Piezoelectric Vibration Energy Harvester [J]. Journal of Vibration and Shock, 2012, 31(16): 33-37.

Google Scholar

[6] JEFFREY L. KAUFFMAN AND GEORGE A. LESIEUTRE. A Low-order Model for the Design of Piezoelectric Energy Harvesting Devices [J]. Journal of Intelligent Material Systems and Structures, 2009, 20(5): 495-503.

DOI: 10.1177/1045389x08101559

Google Scholar

[7] Kanwar Bharat Singh, Vishwas Bedekar, Saied Taheri, et al. Piezoelectric Vibration Energy Harvesting System With an Adaptive Frequency Tuning Mechanism for Intelligent Tires[J]. Mechatronics, 2012, (22): 970-988.

DOI: 10.1016/j.mechatronics.2012.06.006

Google Scholar

[8] ZOU Yuwei, HUNG Xueliang, TAN Linlin. First-order Resonance Frequency and Power Output of a Cantilever Piezoelectric Generator [J]. Journal of Southeast University (Natural Science Edition), 2011, 41(6): 1177-1181.

Google Scholar

[9] Cuong P Le, Einar Halvorsen, Oddvar Søra°sen, et al. Microscale Electrostatic Energy Harvester Using Internal Impacts [J]. Journal of Intelligent Material Systems and Structures, 2012, 23(13): 1409-1421.

DOI: 10.1177/1045389x12436739

Google Scholar

[10] David A. W. Barton, Stephen G. Burrow, Lindsay R. Clare. Energy Harvesting From Vibrations with a Nonlinear Oscillator [J]. Journal of Vibration and Acoustics, 2010, 132(6): 1-7.

DOI: 10.1115/1.4000809

Google Scholar

[11] B.P. Mann, N.D. Sims. Energy Harvesting From the Nonlinear Oscillations of Magnetic Levitation [J]. Journal of Sound and Vibration, 2009, (319): 515-530.

DOI: 10.1016/j.jsv.2008.06.011

Google Scholar

[12] Mohamed M.R. El-Hebear, Mustafa H. Arafa, Said M. Megahed. Modeling and Experimental Verification of Multi-modal Vibration Energy Harvesting From Plate Structures [J]. Sensors and Actuators A, 2013, (193): 35-47.

DOI: 10.1016/j.sna.2013.01.006

Google Scholar

[13] I.N. Ayala-Garcia, P.D. Mitcheson, E.M. Yeatman, et al. Magnetic Tuning of a Kinetic Energy Harvester Using Variable Reluctance [J]. Sensors and Actuators A, 2013, (189): 266-275.

DOI: 10.1016/j.sna.2012.11.004

Google Scholar

[14] Po-Cheng Huang, Tung-Hsiang Tsai, Yao-Joe Yang. Wide-bandwidth Piezoelectric Energy Harvester Integrated with Parylene-C Beam Structures [J]. Microelectronic Engineering, 2013, (111): 214-219.

DOI: 10.1016/j.mee.2013.03.158

Google Scholar

[15] FrancescoDiMonaco, MaryamGhandchiTehrani, StephenJ. Elliott, et al. Energy Harvesting Using Semi-active Control [J]. Journal of Sound and Vibration, 2013, (332): 6033-6043.

DOI: 10.1016/j.jsv.2013.06.005

Google Scholar

[16] Jedol Dayou, W.Y.H. Liew, Man-SangChow. Increasing the Bandwidth of the Width-split Piezoelectric Energy Harvester [J]. Microelectronics Journal, 2012, (43): 484-491.

DOI: 10.1016/j.mejo.2012.03.012

Google Scholar

[17] Roszaidi Ramlan, Michael J Brennan, Brian R Mace, et al. On the Performance of a Dual-mode Non-linear Vibration Energy Harvesting Device [J]. Journal of Intelligent Material Systems and Structures, 2012, 23(13): 1423-1432.

DOI: 10.1177/1045389x12443017

Google Scholar

[18] Lihua Tang, Yaowen Yang and Chee-Kiong Soh. Improving Functionality of Vibration Energy Harvesters Using Magnets [J]. Journal of Intelligent Material Systems and Structures, 2012, 23(13): 1433-1449.

DOI: 10.1177/1045389x12443016

Google Scholar

[19] M.A. Acar, C. Yilmaz. Design of an Adaptive–passive Dynamic Vibration Absorber Composed of a String–mass System Equipped with Negative Stiffness Tension Adjusting Mechanism [J]. Journal of Sound and Vibration, 2013, (332): 231-245.

DOI: 10.1016/j.jsv.2012.09.007

Google Scholar

[20] W Q Liu, A Badel, F Formosa, et al. Novel Piezoelectric Bistable Oscillator Architecture for Wideband Vibration Energy Harvesting [J]. Smart Materials and Structures, 2013, (22): 1-11.

DOI: 10.1088/0964-1726/22/3/035013

Google Scholar

[21] Einar Halvorsen. Fundamental Issues in Nonlinear Wideband-vibration Energy Harvesting [J]. Physical Review, 2013, (87): 0421291-6.

DOI: 10.1103/physreve.87.042129

Google Scholar

[22] Erturk A and Inman D J . Broadband Piezoelectric Power Generation on High-energy Orbits of the Bistable Duffing Oscillator with Electromechanical Coupling[J]. Journal of Sound and Vibration, 2011, 330 2339–53.

DOI: 10.1016/j.jsv.2010.11.018

Google Scholar

[23] M.N. Fakhzan, Asan G.A. Muthalif. Harvesting Vibration Energy Using Piezoelectric Material: Modeling, Simulation and Experimental Verifications [J]. Mechatronics, 2013, (23): 61-66.

DOI: 10.1016/j.mechatronics.2012.10.009

Google Scholar

[24] Özge Zorlu, Haluk Külah. A MEMS-based Energy Harvester for Generating Energy From Non-resonant Environmental Vibrations [J]. Sensors and Actuators A, 2013, (202): 124-134.

DOI: 10.1016/j.sna.2013.01.032

Google Scholar

[25] ZHAO Jian. A Study on Threshold Acceleration Switches Based on Bistable Characteristic[D]. Xian: Xidian University, (2008).

Google Scholar

[26] CHEN Zhongsheng, YANG Yongming. Stochastic Resonance Mechanism for Wideband and low Frequency Vibration Energy Harvesting Based on Piezoelectric Cantilever Beams [J]. Acta Physica Sinica, 2011, 60(7): 074301-074306.

DOI: 10.7498/aps.60.074301

Google Scholar

[27] SUN Shu, CAO Shuqian. Dynamic Modeling and Analysis of a Bistable Piezoelectric Cantilever power generation System [J]. Acta Physica Sinica, 2012, 61(21): 2105051-21050511.

DOI: 10.7498/aps.61.210505

Google Scholar

[28] Bin Tang , M.J. Brennan. On the shock performance of a nonlinear vibration isolator with high-static-low-dynamic-stiffness [J]. International Journal of Mechanical Sciences, 2014, (81): 207-214.

DOI: 10.1016/j.ijmecsci.2014.02.019

Google Scholar

[29] Waleed Al-Ashtari, Matthias Hunstig, Tobias Hemsel, et al. Enhanced energy harvesting using multiple piezoelectric elements: Theory and experiments [J]. Sensors and Actuators A, 2013, (200): 138-146.

DOI: 10.1016/j.sna.2013.01.008

Google Scholar

[30] M. Ferrari, V. Ferrari, M. Guizzetti et al. A Single-magnet Nonlinear Piezoelectric Converter for Enhanced Energy Harvesting from Random Vibrations [J]. Procedia Engineering, 2010, (5): 1156-1159.

DOI: 10.1016/j.proeng.2010.09.316

Google Scholar