[1]
J. Hultström, O. Manneberg, K. Dopf, H.M. Hertz, H. Brismar, M. Wiklund, Proliferation and viability of adherent cells manipulated by standing-wave ultrasound in a microfluidic chip, Ultrasound med. bio., 33 (2007) 145-151.
DOI: 10.1016/j.ultrasmedbio.2006.07.024
Google Scholar
[2]
J.J. Hawkes, R.W. Barber, D.R. Emerson, W.T. Coakley, Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel, Lab Chip, 4 (2004) 446-452.
DOI: 10.1039/b408045a
Google Scholar
[3]
A. Ashkin, J. Dziedzic, T. Yamane, Optical trapping and manipulation of single cells using infrared laser beams, Nature, 330 (1987) 769-771.
DOI: 10.1038/330769a0
Google Scholar
[4]
S.M. Block, D.F. Blair, H.C. Berg, Compliance of bacterial flagella measured with optical tweezers, Nature, 338 (1989) 514-518.
DOI: 10.1038/338514a0
Google Scholar
[5]
J. Dobson, Remote control of cellular behaviour with magnetic nanoparticles, Nature nanotech., 3 (2008) 139-143.
DOI: 10.1038/nnano.2008.39
Google Scholar
[6]
P.C. Li, D.J. Harrison, Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects, Anal. chem., 69 (1997) 1564-1568.
DOI: 10.1021/ac9606564
Google Scholar
[7]
J. Voldman, Electrical forces for microscale cell manipulation, Annu. Rev. Biomed. Eng., 8 (2006) 425-454.
DOI: 10.1146/annurev.bioeng.8.061505.095739
Google Scholar
[8]
N. Mittal, A. Rosenthal, J. Voldman, nDEP microwells for single-cell patterning in physiological media, Lab Chip, 7 (2007) 1146-1153.
DOI: 10.1039/b706342c
Google Scholar
[9]
M. Şen, K. Ino, J. Ramón-Azcón, H. Shiku, T. Matsue, Cell pairing using a dielectrophoresis-based device with interdigitated array electrodes, Lab Chip, 13 (2013) 3650-3652.
DOI: 10.1039/c3lc50561h
Google Scholar
[10]
L. C. Hsiung, C.H. Yang, C.L. Chiu, C.L. Chen, Y. Wang, H. Lee, J.Y. Cheng, M.C. Ho, A.M. Wo, A planar interdigitated ring electrode array via dielectrophoresis for uniform patterning of cells, Biosens. Bioelectron., 24 (2008) 869-875.
DOI: 10.1016/j.bios.2008.07.027
Google Scholar
[11]
C. Huang, C. Liu, J. Loo, T. Stakenborg, L. Lagae, Single cell viability observation in cell dielectrophoretic trapping on a microchip, Appl. Phys. Lett., 104 (2014) 013703.
DOI: 10.1063/1.4861135
Google Scholar
[12]
M. Talary, K. Mills, T. Hoy, A. Burnett, R. Pethig, Dielectrophoretic separation and enrichment of CD34+ cell subpopulation from bone marrow and peripheral blood stem cells, Med. Biol. Eng. Comput., 33 (1995) 235-237.
DOI: 10.1007/bf02523050
Google Scholar
[13]
Y. Huang, S. Joo, M. Duhon, M. Heller, B. Wallace, X. Xu, Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays, Anal. Chem., 74 (2002) 3362-3371.
DOI: 10.1021/ac011273v
Google Scholar
[14]
J. Vykoukal, D.M. Vykoukal, S. Freyberg, E.U. Alt, P.R. Gascoyne, Enrichment of putative stem cells from adipose tissue using dielectrophoretic field-flow fractionation, Lab Chip, 8 (2008) 1386-1393.
DOI: 10.1039/b717043b
Google Scholar
[15]
M. Alshareef, N. Metrakos, E.J. Perez, F. Azer, F. Yang, X. Yang, G. Wang, Separation of tumor cells with dielectrophoresis-based microfluidic chip, Biomicrofluidics, 7 (2013) 011803.
DOI: 10.1063/1.4774312
Google Scholar
[16]
H.A. Pohl, The motion and precipitation of suspensoids in divergent electric fields, J. Appl. Phy., 22 (1951) 869-871.
DOI: 10.1063/1.1700065
Google Scholar