Analysis and Simulation of a Planar Microelectrode Structure for Dielectrophoretic Manipulation of a Single Cell and Cell Cluster

Article Preview

Abstract:

In this paper, we proposed a four-electrode microdevice for precise isolating and trapping of a single cell using negative dielectrophoresis (nDEP) forces. To generate appropriate nDEP forces, sinusoidal alternating currents (AC) signals with various phase shifting were applied to the microelectrodes, and the finite element analysis (FEA) techniques were used to analyze the resulted electric field distribution. The simulation results implied that effective trapping and rotation forces can be realized by the proposed device structure under specific excitation condition. The geometry effect on the electric field distributions of electrodes was further studied in details. For the electrodes with 50 μm width, the maximum value of the gradient of the squared field strength could reach 106 V2/m3, which is higher than that for electrodes with 20 μm width. The influences of applied voltage to electric field gradient were also simulated and the result shows that the dielectrophoresis (DEP) force increased significantly with the magnitude of applied voltage. These preliminary results may provide useful insight and design guidelines for the future DEP microstructure design and fabrication.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

1285-1289

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Hultström, O. Manneberg, K. Dopf, H.M. Hertz, H. Brismar, M. Wiklund, Proliferation and viability of adherent cells manipulated by standing-wave ultrasound in a microfluidic chip, Ultrasound med. bio., 33 (2007) 145-151.

DOI: 10.1016/j.ultrasmedbio.2006.07.024

Google Scholar

[2] J.J. Hawkes, R.W. Barber, D.R. Emerson, W.T. Coakley, Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel, Lab Chip, 4 (2004) 446-452.

DOI: 10.1039/b408045a

Google Scholar

[3] A. Ashkin, J. Dziedzic, T. Yamane, Optical trapping and manipulation of single cells using infrared laser beams, Nature, 330 (1987) 769-771.

DOI: 10.1038/330769a0

Google Scholar

[4] S.M. Block, D.F. Blair, H.C. Berg, Compliance of bacterial flagella measured with optical tweezers, Nature, 338 (1989) 514-518.

DOI: 10.1038/338514a0

Google Scholar

[5] J. Dobson, Remote control of cellular behaviour with magnetic nanoparticles, Nature nanotech., 3 (2008) 139-143.

DOI: 10.1038/nnano.2008.39

Google Scholar

[6] P.C. Li, D.J. Harrison, Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects, Anal. chem., 69 (1997) 1564-1568.

DOI: 10.1021/ac9606564

Google Scholar

[7] J. Voldman, Electrical forces for microscale cell manipulation, Annu. Rev. Biomed. Eng., 8 (2006) 425-454.

DOI: 10.1146/annurev.bioeng.8.061505.095739

Google Scholar

[8] N. Mittal, A. Rosenthal, J. Voldman, nDEP microwells for single-cell patterning in physiological media, Lab Chip, 7 (2007) 1146-1153.

DOI: 10.1039/b706342c

Google Scholar

[9] M. Şen, K. Ino, J. Ramón-Azcón, H. Shiku, T. Matsue, Cell pairing using a dielectrophoresis-based device with interdigitated array electrodes, Lab Chip, 13 (2013) 3650-3652.

DOI: 10.1039/c3lc50561h

Google Scholar

[10] L. C. Hsiung, C.H. Yang, C.L. Chiu, C.L. Chen, Y. Wang, H. Lee, J.Y. Cheng, M.C. Ho, A.M. Wo, A planar interdigitated ring electrode array via dielectrophoresis for uniform patterning of cells, Biosens. Bioelectron., 24 (2008) 869-875.

DOI: 10.1016/j.bios.2008.07.027

Google Scholar

[11] C. Huang, C. Liu, J. Loo, T. Stakenborg, L. Lagae, Single cell viability observation in cell dielectrophoretic trapping on a microchip, Appl. Phys. Lett., 104 (2014) 013703.

DOI: 10.1063/1.4861135

Google Scholar

[12] M. Talary, K. Mills, T. Hoy, A. Burnett, R. Pethig, Dielectrophoretic separation and enrichment of CD34+ cell subpopulation from bone marrow and peripheral blood stem cells, Med. Biol. Eng. Comput., 33 (1995) 235-237.

DOI: 10.1007/bf02523050

Google Scholar

[13] Y. Huang, S. Joo, M. Duhon, M. Heller, B. Wallace, X. Xu, Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays, Anal. Chem., 74 (2002) 3362-3371.

DOI: 10.1021/ac011273v

Google Scholar

[14] J. Vykoukal, D.M. Vykoukal, S. Freyberg, E.U. Alt, P.R. Gascoyne, Enrichment of putative stem cells from adipose tissue using dielectrophoretic field-flow fractionation, Lab Chip, 8 (2008) 1386-1393.

DOI: 10.1039/b717043b

Google Scholar

[15] M. Alshareef, N. Metrakos, E.J. Perez, F. Azer, F. Yang, X. Yang, G. Wang, Separation of tumor cells with dielectrophoresis-based microfluidic chip, Biomicrofluidics, 7 (2013) 011803.

DOI: 10.1063/1.4774312

Google Scholar

[16] H.A. Pohl, The motion and precipitation of suspensoids in divergent electric fields, J. Appl. Phy., 22 (1951) 869-871.

DOI: 10.1063/1.1700065

Google Scholar