[1]
Luo, Y.C.; Bai, J.Q.; Li, Q.J.; Research progress of tissue engineered bone vascularization, J. China Journal of Coal Industry Medicine. 12 (2009) 501-503.
Google Scholar
[2]
Dong, Q.S.; Mao, T.Q. Construction ideas of bone tissue engineering vascularization, J. International Journal of Stomatology. 35 (2008) 321-324.
Google Scholar
[3]
Liu, Y.; Lim, J.; Teoh, S.H. Review: Development of clinically relevant scaffolds for vascularised bone tissue engineering, J. Biotechnology Advances. 31 (2013) 688-705.
DOI: 10.1016/j.biotechadv.2012.10.003
Google Scholar
[4]
Muschler, G.F.; Nakamoto, C.; Griffith, L.G. Engineering principles of clinical cell-based tissue engineering, J. J Bone Joint Surg Am. 86 (2004) 1541-1558.
DOI: 10.2106/00004623-200407000-00029
Google Scholar
[5]
Santos, M.I.; Reis, R.L. Vascularization in Bone Tissue Engineering: Physiology, Current Strategies, Major Hurdles and Future Challenges, J. Macromolecular Bioscience. 10 (2010) 12-27.
DOI: 10.1002/mabi.200900107
Google Scholar
[6]
Landman K.A.; Cai A.Q. Cell proliferation and oxygen diffusion in a vascularising scaffold, J. Bull Math Biol. 69 (2007) 2405-2428.
DOI: 10.1007/s11538-007-9225-x
Google Scholar
[7]
Rouwkema, J.; Rivron, N.C.; van Blitterswijk, C.A. Vascularization in tissue engineering, J. Trends in Bio-technology. 26 (2008) 434-441.
DOI: 10.1016/j.tibtech.2008.04.009
Google Scholar
[8]
Lovett, M.; Lee, K.; Edwards, A.; Kaplan, D.L. Vascularization Strategies for Tissue Engineering, J. Tissue Engineering: Part B. 15 (2009) 353-370.
DOI: 10.1089/ten.teb.2009.0085
Google Scholar
[9]
Wang, J.L.; Yang, M.Y.; Zhu, Y.; Wang, L.; Tomsia, A.P.; Mao, C.B. Phage Nanofibers Induce Vascularized Osteogenesis in 3D Printed Bone Scaffolds, J. Advanced Materials. 26 (2014) 4961-4966.
DOI: 10.1002/adma.201400154
Google Scholar
[10]
Krishnan, L.; Willett, N.J.; Guldberg, R.E. Vascularization Strategies for Bone Regeneration, J. Annals of Biomedical Engineering. 42(2014) 432-44.
DOI: 10.1007/s10439-014-0969-9
Google Scholar
[11]
Volkmer, E.; Drosse, I.; Otto, S.; Stangelmayer, A.; Stengele, M.; Kallukalam, B.C.; Mutschler, W.; Schieker, M. Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone, J. Tissue Engineer. Part A. 14 (2008) 1331-1340.
DOI: 10.1089/ten.tea.2007.0231
Google Scholar
[12]
Xiaohong Wang, Yongnian Yan, Renji Zhang. Recent trends and challenges in complex organ manufacturing, J. Tissue Engineering Part B. 16 (2010) 189-197.
DOI: 10.1089/ten.teb.2009.0576
Google Scholar
[13]
Yan, Y.N.; Zhang, T.; Zhang, R.J. Forming and Manufacturing Technique for Cells and Biological Materials, J. Journal of mechanical engineering. 46 (2010) 80-87.
Google Scholar
[14]
Yu, H.Y.; VandeVord, P.J.; Li, M.; Matthew, H.W.; Wooley, P.H.; Yang, S.Y. Improved tissue engineered bone regeneration by endothelial cell mediated vascularization, J. Biomaterials. 30 (2009) 508-17.
DOI: 10.1016/j.biomaterials.2008.09.047
Google Scholar
[15]
Huang, G.Y.; Zhou, Y.H.; Zhang, Q.C. Microfluidic hydrogels for tissue engineering, J. Biofabrication. 3 (2011) 1-13.
Google Scholar
[16]
Moroni, L.; Schotel, R.; Sohier, J. Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness, J. Biomaterials . 27 (2006) 5918-5926.
DOI: 10.1016/j.biomaterials.2006.08.015
Google Scholar
[17]
Hu, M.; Kurisawa, M.; Deng, R.; Teo, C.M.; Schumacher, A. Cell immobilization in gelatin hydroxyphenylpropionic acid hydrogel fibers, J. Biomaterials. 30 (2009) 3523-3531.
DOI: 10.1016/j.biomaterials.2009.03.004
Google Scholar
[18]
Zhang, J.M.; Zhang, X.Z.; Li, R.X. Preparation of tissue engineering scaffolds using rapid prototyping, J. Chinese Journal of Tissue Engineering Research. 17 (2013) 1435-1440.
Google Scholar
[19]
Whiteskles, G.M.; Grzybowski, B. Self-assembly at all scales, J. Science. 295 (2002) 2418-2421.
DOI: 10.1126/science.1070821
Google Scholar
[20]
Pfister, A.; Landers, R.; Laib, A.; Hübner, U.; Schmelzeisen, R.; Mülhaupt, R. Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing, J. Journal of Polymer Science Part A: Polymer Chemistry. 42( 2004) 624-638.
DOI: 10.1002/pola.10807
Google Scholar
[21]
Bose, S.; Vahabzadeh, S. Bone tissue engineering using 3D printing, J. Materials Today. 16 (2013) 496-504.
DOI: 10.1016/j.mattod.2013.11.017
Google Scholar
[22]
Cornock, R.; Beirne, S.; Thompson, B.; Wallace, G.G. Coaxial additive manufacture of biomaterial composite scaffolds for tissue engineering, J. Biofabrication. 6 (2014) 025002.
DOI: 10.1088/1758-5082/6/2/025002
Google Scholar
[23]
Lewinska, D.; Chwojnowski, A.; Wojciechowski, C.; Kupikowska-Stobba, B; Grzeczkowicz, M. Electrostatic Droplet Generator with 3-Coaxial-Nozzle Head for Microencapsulation of Living Cells in Hydrogel Covered by Synthetic Polymer Membranes, J. Separation science and technology. 47 (2012).
DOI: 10.1080/01496395.2011.617350
Google Scholar
[24]
Perez, R.A.; Kim, H.W. Core–shell designed scaffolds of alginate/alpha-tricalcium phosphate for the loading and delivery of biological proteins, J. Journal of Biomedical Materials Research Part A. 101A (2013) 1103-1112.
DOI: 10.1002/jbm.a.34406
Google Scholar
[25]
Zhang, Y.; Yu, Y.; Chen, H.; Ozbolat, I.T. Characterization of printable cellular micro-fluidic channels for tissue engineering, J. Biofabrication. 5 (2013) 1-11.
DOI: 10.1088/1758-5082/5/2/025004
Google Scholar
[26]
Ahn, S.H.; Lee, H.J.; Bonassar, L.J. Cells (MC3T3-E1)-Laden Alginate Scaffolds Fabricated by a Modified Solid-Freeform Fabrication Process Supplemented with an Aerosol Spraying, J. Biomacromolecules. 13 (2012) 2997-3003.
DOI: 10.1021/bm3011352
Google Scholar
[27]
Yang, C. H; Huang, K.S.; Wang, C.Y. Microfluidic-assisted synthesis of hemispherical and discoidal chitosan microparticles at an oil/water interface, J. Electrophoresis. 33 (2012) 3173-3180.
DOI: 10.1002/elps.201200211
Google Scholar
[28]
He, S.L.; Yin, Y. J; Zhang, M. Research Advances on Sodium Alginate Hydrogels for Tissue Engineering, J. Chemical industry and engineering progress. 23 (2004) 1174-1177.
Google Scholar