Melt Electrohydrodynamic Direct-Writing Micro/Nano Fiber with Restriction of Heated Sheath Gas

Article Preview

Abstract:

Melt electrospinning is a novel technology in the field of 1D micro/nanostructure fabrication. Decreasing the diameter and promoting surface morphology of melt fiber are the key for the application of melt electrospinning technology. Heated sheath gas is introduced to build up melt electrospinning direct-write technology, and then orderly micro/nanofibers can be direct-written. The heated sheath gas provided a good way to increase the temperature of melt jet, by which solidification can be slowed. With the help of heated sheath gas, the diameter of melt fiber can be decreased. The affects of process parameters on the diameter of melt electrospinning fiber was investigated, the diameter of melt electrospinning fiber increased with the increasing of temperature of spinneret and feed rate, but decreased with the increasing of voltage and distance between spinneret and collector. Heated sheath gas is an excellent method to promote the application of melt electrospinning.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

45-51

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Subbiah, G.S. Bhat, R.W. Tock, S. Parameswaran, S.S. Ramkumar. Electrospinning of nanofibers, J. Appl. Polym. Sci. 2005, 96 (2) 557-569.

DOI: 10.1002/app.21481

Google Scholar

[2] D. Li, Y. Xia. Electrospinning of Nanofibers: Reinventing the Wheel, Adv. Mater. 2004, 16 (14) 1151-1170.

DOI: 10.1002/adma.200400719

Google Scholar

[3] D. Li, J.T. McCann, Y. Xia, M. Marquez. Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes, J. Am. Ceram. Soc. 2006, 89 (6) 1861-1869.

DOI: 10.1111/j.1551-2916.2006.00989.x

Google Scholar

[4] Z.M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna. A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol. 2003, 63 (15) 2223-2253.

DOI: 10.1016/s0266-3538(03)00178-7

Google Scholar

[5] L.M. Bellan; H.G. Craighead. Nanomanufacturing using electrospinning, J. Manuf. Sci. E-T Aams. 2009, 131 (3) 034001.

Google Scholar

[6] L. Persano, A. Camposeo, C. Tekmen, D. Pisignano. Industrial upscaling of electrospinning and applications of polymer nanofibers: a review, Macromol. Mater. Eng. 2013, 298 (5) 504-520.

DOI: 10.1002/mame.201200290

Google Scholar

[7] A. Frenot, I.S. Chronakis. Polymer nanofibers assembled by electrospinning, Curr. Opin. Colloid. In. 2003, 8 (1) 64-75.

DOI: 10.1016/s1359-0294(03)00004-9

Google Scholar

[8] N. Bhardwaj, S.C. Kundu. Electrospinning: a fascinating fiber fabrication technique, Biotechnol. adv. 2010, 28 (3) 325-347.

DOI: 10.1016/j.biotechadv.2010.01.004

Google Scholar

[9] T.D. Brown, P.D. Dalton, D.W. Hutmacher. Direct writing by way of melt electrospinning, Adv. Mater. 2011, 23 (47) 5651-5657.

DOI: 10.1002/adma.201103482

Google Scholar

[10] T.D. Brown, P.D. Dalton, D.W. Hutmacher. Melt electrospinning in a direct writing mode, J. Tissue Eng. Regene. M. 2012, 6 383-384.

Google Scholar

[11] S. De Vrieze, T. Van Camp, A. Nelvig, B. Hagstrom, P. Westbroek, De Clerck K. The effect of temperature and humidity on electrospinning, J. Mater. Sci. 2009, 44 (5) 1357-1362.

DOI: 10.1007/s10853-008-3010-6

Google Scholar

[12] Y. Srivastava, I. Loscertales, M. Marquez, T. Thorsen. Electrospinning of hollow and core/sheath nanofibers using a microfluidic manifold, Microfluid. Nanofluid. 2008, 4 (3) 245-250.

DOI: 10.1007/s10404-007-0177-0

Google Scholar

[13] D.H. Sun, C. Chang, S. Li, L.W. Lin. Near-field electrospinning, Nano Lett. 2006, 6 (4) 839-842.

DOI: 10.1021/nl0602701

Google Scholar