Hierarchically Ordered Porous Carbon as a Host Material for Energetic Composites

Article Preview

Abstract:

Hierarchically ordered macro-/mesoporous carbon (HOPC) was synthesized via a dual-template approach and used as the host matrixes to design the host-guest energetic composites. Monodisperse silica colloidal crystals were used as a hard template, amphiphilic triblock copolymer Pluronic F127 as a soft template, and soluble resols as a carbon source. The obtained HOPC is composed of highly ordered fcc macropores (225 nm), interconnected macropore windows (40 nm), and large mesopores (11.6 nm), resulting in high surface area (503.6 m2/g) and large pore volume (0.833 cm3/g). A high energy material (CL-20) had been encapsulated in HOPC by impregnation process, and the maximum loading amount was around 63 wt.%. The synthesized CL-20/HOPC host-guest energetic composites exhibit much lower thermal decomposition temperature than that of pure CL-20 and their physical mixture.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

64-69

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Sen, G.J.T. Tiddy, J.L. Casci, M.W. Anderson, One-pot synthesis of hierarchically ordered porous-silica materials with three orders of length scale, Angew. Chem. Int. Ed. 42 (2003) 4649-4653.

DOI: 10.1002/anie.200351479

Google Scholar

[2] G.S. Chai, I.S. Shin, J.S. Yu, Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells, Adv. Mater. 16 (2004).

DOI: 10.1002/adma.200400283

Google Scholar

[3] Z.Y. Yuan, T.Z. Ren, A. Vantomme, B.L. Su, Facile and generalized preparation of hierarchically mesoporous-macroporous binary metal oxide materials, Chem. Mater. 16 (2004) 5096-5106.

DOI: 10.1021/cm0494812

Google Scholar

[4] G. Collins, M. Blömker, M. Osiak, J.D. Holmes, M. Bredol, C. O'Dwyer, Three- dimensionally ordered hierarchically porous tin dioxide inverse opals and immobilization of palladium nanoparticles for catalytic applications, Chem. Mater. 25 (2013).

DOI: 10.1021/cm402458v

Google Scholar

[5] T.S. Li, A.J. Duan, Z. Zhao, B.J. Liu, G.Y. Jiang, J. Liu, Y.C. Wei, H.F. Pan, Synthesis of ordered hierarchically porous L-SBA-15 material and its hydro-upgrading performance for FCC gasoline, Fuel 117 (2014) 974-980.

DOI: 10.1016/j.fuel.2013.10.035

Google Scholar

[6] Z.K. Sun, Y.H. Deng, J. Wei, D. Gu, B. Tu, D.Y. Zhao, Hierarchically ordered macro-mesoporous silica monolith tuning macropore entrance size for size-selective adsorption of proteins, Chem. Mater. 23 (2011) 2176-2184.

DOI: 10.1021/cm103704s

Google Scholar

[7] B. Ding, C.Z. Yuan, L.F. Shen, G.Y. Xu, P. Nie, X.G. Zhang, Encapsulating sulfur into hierarchically ordered porous carbon as a high-performance cathode for lithium-sulfur batteries, Chem. Eur. J. 19 (2013) 1013-1019.

DOI: 10.1002/chem.201202127

Google Scholar

[8] X. Huang, H. Yu, J. Chen, Z.Y. Lu, R. Yazami, H.H. Hng, Ultrahigh rate capabilities of lithium-ion batteries from 3D ordered hierarchically porous electrodes with entrapped activenanoparticles configuration, Adv. Mater. 26 (2014) 1296-1303.

DOI: 10.1002/adma.201304467

Google Scholar

[9] W. Zhu, S.Y. Tao, C.A. Tao, W.N. Li, C.X. Lin, M. Li, Y.Q. Wen, G.T. Li, Hierarchically imprinted porous films for rapid and selective detection of explosives, Langmuir 27 (2011) 8451-8457.

DOI: 10.1021/la201055b

Google Scholar

[10] C.G. Oh, Y.Y. Baek, S.K. Ihm, Synthesis of skeletal-structured biporous silicate powders through microcolloidal crystal templating, Adv. Mater. 17 (2005) 270-273.

DOI: 10.1002/adma.200400192

Google Scholar

[11] C.Z. Li, J.H. He, Easy replication of pueraria lobata toward hierarchically ordered porous γ-Al2O3, Langmuir 22 (2006) 2827-2831.

DOI: 10.1021/la0533213

Google Scholar

[12] Y.H. Deng, C. Liu, T. Yu, F.Q. Zhang, Y. Wan, L.J. Zhang, C.C. Wang, B. Tu, P.A. Webley, H.T. Wang, D.Y. Zhao, Facile synthesis of hierarchically porous carbons from dual colloidal crystal-block copolymer template approach, Chem. Mater. 19 (2007).

DOI: 10.1021/cm070600y

Google Scholar

[13] S.L. Zhang, L. Chen, S.X. Zhou, D.Y. Zhao, L.M. Wu, Facile synthesis of hierarchically ordered porous carbon via in situ self-assembly of colloidal polymer and silica spheres and its use as a catalyst support, Chem. Mater. 22 (2010) 3433-3440.

DOI: 10.1021/cm1002274

Google Scholar

[14] T.C. Chou, C.H. Huang, R.A. Doong, C.C. Hu, Architectural design of hierarchically ordered porous carbons for high-rate electrochemical capacitors, J. Mater. Chem. A. 1 (2013) 2886-2895.

DOI: 10.1039/c2ta01190e

Google Scholar

[15] L.H. Yu, N. Brun, K. Sakaushi, J. Eckert, M.M. Titirici, Synthesis of hierarchically porous carbon monoliths and their application in lithium-sulfur batteries, Carbon 61 (2013) 245-253.

DOI: 10.1016/j.carbon.2013.05.001

Google Scholar

[16] U. Suryavanshi, T. Iijima, A. Hayashia, Y. Hayashi, M. Tanemura, Fabrication of ZnO nanoparticles confined in the channels of mesoporous carbon, Chem. Eng. J. 179 (2012) 388-393.

DOI: 10.1016/j.cej.2011.10.087

Google Scholar

[17] H.Q. Cai, R.J. Yang, G.C. Yang, H. Huang, F.D. Nie, Host–guest energetic nanocomposites based on self-assembly of multi-nitro organic molecules in nanochannels of mesoporous materials, Nanotechnology 22 (2011) 305602 (6pp).

DOI: 10.1088/0957-4484/22/30/305602

Google Scholar

[18] H.Q. Cai, L. Tian, H. Huang, J.S. Li, J.G. Deng, G.C. Yang, The formation of energetic composites by embedding multi-nitro organic molecules in an ordered mesoporous carbon, Micropor. Mesopor. Mater. 163 (2012) 110-114.

DOI: 10.1016/j.micromeso.2012.07.007

Google Scholar

[19] H.Q. Cai, L. Tian, B. Huang, G.C. Yang, D.B. Guan, H. Huang, 1, 1-Diamino-2, 2-dintroethene (FOX-7) nanocrystals embedded in mesoporous carbon FDU-15, Micropor. Mesopor. Mater. 170 (2013) 20-25.

DOI: 10.1016/j.micromeso.2012.11.034

Google Scholar

[20] U.R. Nair, R. Sivabalan, G.M. Gore, M. Geetha, S.N. Asthana, H. Singh, Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations, Combust. Explos. Shock Waves 41 (2005) 121-132.

DOI: 10.1007/s10573-005-0014-2

Google Scholar

[21] W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci. 26 (1968) 62-69.

DOI: 10.1016/0021-9797(68)90272-5

Google Scholar

[22] Y. Meng, D. Gu, F.Q. Zhang, Y.F. Shi, H.F. Yang, Z. Li, C.Z. Yu, B. Tu, D.Y. Zhao, Ordered mesoporous polymers and homologous carbon frameworks amphiphilic surfactan templating and direct transformation, Angew. Chem. Int. Ed. 44 (2005) 7053–7059.

DOI: 10.1002/anie.200501561

Google Scholar

[23] M. Beiner, G.T. Rengarajan, S. Pankaj, D. Enke, M. Steinhart, Manipulating the crystalline state of pharmaceuticals by nanoconfinement, Nano Lett. 7 (2007) 1381-1385.

DOI: 10.1021/nl0705081

Google Scholar

[24] R. Turcotte, M. Vachon, Q.S.M. Kwok, R.P. Wang, D.E.G. Jones, Thermal study of HNIW (CL-20), Thermochim. Acta 433(2005) 105-115.

DOI: 10.1016/j.tca.2005.02.021

Google Scholar