[1]
T. Sen, G.J.T. Tiddy, J.L. Casci, M.W. Anderson, One-pot synthesis of hierarchically ordered porous-silica materials with three orders of length scale, Angew. Chem. Int. Ed. 42 (2003) 4649-4653.
DOI: 10.1002/anie.200351479
Google Scholar
[2]
G.S. Chai, I.S. Shin, J.S. Yu, Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells, Adv. Mater. 16 (2004).
DOI: 10.1002/adma.200400283
Google Scholar
[3]
Z.Y. Yuan, T.Z. Ren, A. Vantomme, B.L. Su, Facile and generalized preparation of hierarchically mesoporous-macroporous binary metal oxide materials, Chem. Mater. 16 (2004) 5096-5106.
DOI: 10.1021/cm0494812
Google Scholar
[4]
G. Collins, M. Blömker, M. Osiak, J.D. Holmes, M. Bredol, C. O'Dwyer, Three- dimensionally ordered hierarchically porous tin dioxide inverse opals and immobilization of palladium nanoparticles for catalytic applications, Chem. Mater. 25 (2013).
DOI: 10.1021/cm402458v
Google Scholar
[5]
T.S. Li, A.J. Duan, Z. Zhao, B.J. Liu, G.Y. Jiang, J. Liu, Y.C. Wei, H.F. Pan, Synthesis of ordered hierarchically porous L-SBA-15 material and its hydro-upgrading performance for FCC gasoline, Fuel 117 (2014) 974-980.
DOI: 10.1016/j.fuel.2013.10.035
Google Scholar
[6]
Z.K. Sun, Y.H. Deng, J. Wei, D. Gu, B. Tu, D.Y. Zhao, Hierarchically ordered macro-mesoporous silica monolith tuning macropore entrance size for size-selective adsorption of proteins, Chem. Mater. 23 (2011) 2176-2184.
DOI: 10.1021/cm103704s
Google Scholar
[7]
B. Ding, C.Z. Yuan, L.F. Shen, G.Y. Xu, P. Nie, X.G. Zhang, Encapsulating sulfur into hierarchically ordered porous carbon as a high-performance cathode for lithium-sulfur batteries, Chem. Eur. J. 19 (2013) 1013-1019.
DOI: 10.1002/chem.201202127
Google Scholar
[8]
X. Huang, H. Yu, J. Chen, Z.Y. Lu, R. Yazami, H.H. Hng, Ultrahigh rate capabilities of lithium-ion batteries from 3D ordered hierarchically porous electrodes with entrapped activenanoparticles configuration, Adv. Mater. 26 (2014) 1296-1303.
DOI: 10.1002/adma.201304467
Google Scholar
[9]
W. Zhu, S.Y. Tao, C.A. Tao, W.N. Li, C.X. Lin, M. Li, Y.Q. Wen, G.T. Li, Hierarchically imprinted porous films for rapid and selective detection of explosives, Langmuir 27 (2011) 8451-8457.
DOI: 10.1021/la201055b
Google Scholar
[10]
C.G. Oh, Y.Y. Baek, S.K. Ihm, Synthesis of skeletal-structured biporous silicate powders through microcolloidal crystal templating, Adv. Mater. 17 (2005) 270-273.
DOI: 10.1002/adma.200400192
Google Scholar
[11]
C.Z. Li, J.H. He, Easy replication of pueraria lobata toward hierarchically ordered porous γ-Al2O3, Langmuir 22 (2006) 2827-2831.
DOI: 10.1021/la0533213
Google Scholar
[12]
Y.H. Deng, C. Liu, T. Yu, F.Q. Zhang, Y. Wan, L.J. Zhang, C.C. Wang, B. Tu, P.A. Webley, H.T. Wang, D.Y. Zhao, Facile synthesis of hierarchically porous carbons from dual colloidal crystal-block copolymer template approach, Chem. Mater. 19 (2007).
DOI: 10.1021/cm070600y
Google Scholar
[13]
S.L. Zhang, L. Chen, S.X. Zhou, D.Y. Zhao, L.M. Wu, Facile synthesis of hierarchically ordered porous carbon via in situ self-assembly of colloidal polymer and silica spheres and its use as a catalyst support, Chem. Mater. 22 (2010) 3433-3440.
DOI: 10.1021/cm1002274
Google Scholar
[14]
T.C. Chou, C.H. Huang, R.A. Doong, C.C. Hu, Architectural design of hierarchically ordered porous carbons for high-rate electrochemical capacitors, J. Mater. Chem. A. 1 (2013) 2886-2895.
DOI: 10.1039/c2ta01190e
Google Scholar
[15]
L.H. Yu, N. Brun, K. Sakaushi, J. Eckert, M.M. Titirici, Synthesis of hierarchically porous carbon monoliths and their application in lithium-sulfur batteries, Carbon 61 (2013) 245-253.
DOI: 10.1016/j.carbon.2013.05.001
Google Scholar
[16]
U. Suryavanshi, T. Iijima, A. Hayashia, Y. Hayashi, M. Tanemura, Fabrication of ZnO nanoparticles confined in the channels of mesoporous carbon, Chem. Eng. J. 179 (2012) 388-393.
DOI: 10.1016/j.cej.2011.10.087
Google Scholar
[17]
H.Q. Cai, R.J. Yang, G.C. Yang, H. Huang, F.D. Nie, Host–guest energetic nanocomposites based on self-assembly of multi-nitro organic molecules in nanochannels of mesoporous materials, Nanotechnology 22 (2011) 305602 (6pp).
DOI: 10.1088/0957-4484/22/30/305602
Google Scholar
[18]
H.Q. Cai, L. Tian, H. Huang, J.S. Li, J.G. Deng, G.C. Yang, The formation of energetic composites by embedding multi-nitro organic molecules in an ordered mesoporous carbon, Micropor. Mesopor. Mater. 163 (2012) 110-114.
DOI: 10.1016/j.micromeso.2012.07.007
Google Scholar
[19]
H.Q. Cai, L. Tian, B. Huang, G.C. Yang, D.B. Guan, H. Huang, 1, 1-Diamino-2, 2-dintroethene (FOX-7) nanocrystals embedded in mesoporous carbon FDU-15, Micropor. Mesopor. Mater. 170 (2013) 20-25.
DOI: 10.1016/j.micromeso.2012.11.034
Google Scholar
[20]
U.R. Nair, R. Sivabalan, G.M. Gore, M. Geetha, S.N. Asthana, H. Singh, Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations, Combust. Explos. Shock Waves 41 (2005) 121-132.
DOI: 10.1007/s10573-005-0014-2
Google Scholar
[21]
W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci. 26 (1968) 62-69.
DOI: 10.1016/0021-9797(68)90272-5
Google Scholar
[22]
Y. Meng, D. Gu, F.Q. Zhang, Y.F. Shi, H.F. Yang, Z. Li, C.Z. Yu, B. Tu, D.Y. Zhao, Ordered mesoporous polymers and homologous carbon frameworks amphiphilic surfactan templating and direct transformation, Angew. Chem. Int. Ed. 44 (2005) 7053–7059.
DOI: 10.1002/anie.200501561
Google Scholar
[23]
M. Beiner, G.T. Rengarajan, S. Pankaj, D. Enke, M. Steinhart, Manipulating the crystalline state of pharmaceuticals by nanoconfinement, Nano Lett. 7 (2007) 1381-1385.
DOI: 10.1021/nl0705081
Google Scholar
[24]
R. Turcotte, M. Vachon, Q.S.M. Kwok, R.P. Wang, D.E.G. Jones, Thermal study of HNIW (CL-20), Thermochim. Acta 433(2005) 105-115.
DOI: 10.1016/j.tca.2005.02.021
Google Scholar