Adsorption of Silver Nanoparticles on Modified Surfaces

Article Preview

Abstract:

Uniform films of silver nanoparticles (Ag NPs) were fabricated by self-assembly on 3-aminopropyltriethoxysilane (APTES) and [3-(2-aminoethyl) aminopropyl] trimethoxysilane (AEAPTES) modified glass slides. A stable Ag NPs suspension was synthesized via the reduction of silver nitrate using sodium citrate. Bulk characteristics of Ag NPs in aqueous solution were carried out by measuring their absorption spectrum, morphology and particle shape using the UV-vis absorption spectroscopy and transmission electron microscopy (TEM), respectively. The average diameter of Ag NPs is about 50 nm. The coverage of adsorbed particles on the modified glasses was measured by scanning electron microscopic imaging (SEM). The SEM images indicate that the Ag NPs films on the glasses are uniform. It is supposed that the adsorption processes are mainly controlled by electrostatic interactions. The adsorption amount of Ag NPs on APTES modified glass slides is much more than the amount on AEAPTES modified glass slides.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

75-79

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Steffan, A. Jakob, P. Claus, H. Lang, Silica supported silver nanoparticles from a silver(I) carboxylate: Highly active catalyst for regioselective hydrogenation, Catal. Commum. 10 (2009) 437-441.

DOI: 10.1016/j.catcom.2008.10.003

Google Scholar

[2] N.J. Borys, J.M. Lupton, Surface-Enhanced Light Emission from Single Hot Spots in Tollens Reaction Silver Nanoparticle Films: Linear versus Nonlinear Optical Excitation, J. Phys. Chem. C. 115 (2011) 13645-13659.

DOI: 10.1021/jp203866g

Google Scholar

[3] H. Kang, J. Yim, S. Jeong, J.K. Yang, S. Kyeong, S.J. Jeon, J. Kim, K.D. Eom, H. Lee, H.I. Kim, D.H. Jeong, J.H. Kim, Y.S. Lee, Polymer-mediated formation and assembly of silver nanoparticles on silica nanospheres for sensitive surface-enhanced raman scattering detection, ACS Appl. Mater. Interfaces. 5 (2013).

DOI: 10.1021/am404435d

Google Scholar

[4] P.C. Lee, D. Meisel, Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols, J. Phys. Chem. 86(1982), 3391-3395.

DOI: 10.1021/j100214a025

Google Scholar

[5] Y. Yang, S. Matsubara, L. Xiong, T. Hayakawa, M. Nogami, Solvothermal Synthesis of Multiple Shapes of Silver Nanoparticles and Their SERS Properties, J. Phys. Chem. C. 111 (2007) 9095-9104.

DOI: 10.1021/jp068859b

Google Scholar

[6] A.V. Simakin, V.V. Voronov, N.A. Kirichenko, G.A. Shafeev, Nanoparticles produced by laser ablation of solids in liquid environment, Appl. Phys. A. 79 (2004) 1127-1132.

DOI: 10.1007/s00339-004-2660-8

Google Scholar

[7] Y. Saito, J. J. Wang, D. A. Smith, D. N. Batchelder, A Simple Chemical Method for the Preparation of Silver Surfaces for Efficient SERS, Langmuir. 18 (2002) 2959-2961.

DOI: 10.1021/la011554y

Google Scholar

[8] E. Grantscharova, D. Dobrev, Catalytic activity of ion-bombarded silver films, Thin Solid Films. 196 (1991) 163-169.

DOI: 10.1016/0040-6090(91)90184-y

Google Scholar

[9] D. Lee, R.E. Cohen, M.F. Rubner, Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles, Langmuir. 21 (2005) 9651-9659.

DOI: 10.1021/la0513306

Google Scholar

[10] Y. Chi, E. Lay, T.Y. Chou, Y.H. Song, A.J. Carty, Deposition of silver films using the pyrazolate complex, Chem. Vapor Depos. 11 (2005) 206-212.

DOI: 10.1002/cvde.200406351

Google Scholar

[11] I.C. Estrada-Raygoza, M. Sotelo-Lerma, R. Ramirze-Bon, Structural and morphological characterization of chemically deposited silver films, J. Phys. Chem. Solids. 67 (2006) 782-788.

DOI: 10.1016/j.jpcs.2005.10.183

Google Scholar

[12] M. Levin and A. Laakso Evaporation of silver thin films on mica, Appl. Surf. Sci. 171 (2001) 257-264.

Google Scholar

[13] Y. Yan, S.Z. Kang, J. Mu, Preparation of high quality Ag films from Ag nanoparticles, Appl. Surf. Sci. 253 (2007) 4677-4679.

DOI: 10.1016/j.apsusc.2006.10.039

Google Scholar

[14] M. Ocwieja, Z. Adamczyk, M. Morga, A. Michna, High density silver nanoparticle monolayers produced by colloid self-assembly on polyelectrolyte supporting layers, J. Colloid Interface Sci. 364 (2011) 39-48.

DOI: 10.1016/j.jcis.2011.07.059

Google Scholar

[15] C.Y. Flores, C. Diaz, A. Rubert, G.A. Benítez, M.S. Moreno, M.A. Fernández Lorenzo de Mele, R.C. Salvarezza, P.L. Schilardi, C. Vericat, Spontaneous adsorption of silver nanoparticles on Ti/TiO2 surfaces. Antibacterial effect on Pseudomonas aeruginosa, J. Colloid Interface Sci. 350 (2010).

DOI: 10.1016/j.jcis.2010.06.052

Google Scholar

[16] K. Nishioka, T. Sueto, N. Saito, Formation of antireflection nanostructure for silicon solar cells using catalysis of single nano-sized silver particle, Appl. Surf. Sci. 255 (2009) 9504-9507.

DOI: 10.1016/j.apsusc.2009.07.079

Google Scholar

[17] S. Zhu, C. Fan, J. Wang, J. He, E. Liang, Self-Assembled Ag Nanoparticles for Surface Enhanced Raman Scattering, Optical Review, 20 (2013) 361–366. Reference an article.

DOI: 10.1007/s10043-013-0065-7

Google Scholar