[1]
S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.
DOI: 10.1038/354056a0
Google Scholar
[2]
R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Carbon nanotubes-the route toward applications, Science, 297 (2002) 787-792.
DOI: 10.1126/science.1060928
Google Scholar
[3]
S. Geier, T. Mahrholz, P. Wierach and M. Sinapius, Carbon nanotube array actuators, Smart Mater. Struct., 22 (2013) 94003.
DOI: 10.1088/0964-1726/22/9/094003
Google Scholar
[4]
U. Kosidlo, M. Omastová, M. Micusík, G. Ćirić-Marjanović, H. Randriamahazaka, T. Wallmersperger, A. Aabloo, I. Kolaric and T. Bauernhansl, Smart Mater. Struct., 22 (2013) 104022.
DOI: 10.1088/0964-1726/22/10/104022
Google Scholar
[5]
A, Modi, N. Koratkar, E. Lass, B. Q. Wei and P. M. Ajayan, Miniaturized gas ionization sensors using carbon nanotubes, Nature, 424 (2003) 171-174.
DOI: 10.1038/nature01777
Google Scholar
[6]
J. S. Chang, P. A. Lawless and T. Yamamoto, Corona discharge processes, IEEE Trans. Plasma Sci., 19 (1991) 1152-1166.
DOI: 10.1109/27.125038
Google Scholar
[7]
G. E. Georghiou, A. P. Papadakis, R. Morrow and A. C. Metaxas, Numerical modeling of atmospheric pressure gas discharges leading to plasma production, J. Phys. D: Appl. Phys., 38 (2005) 303-328.
DOI: 10.1088/0022-3727/38/20/r01
Google Scholar
[8]
G. W. Trichel, The mechanism of the negative point to plane corona near onset, Phys. Rev., 54 (1938) 1078-1084.
DOI: 10.1103/physrev.54.1078
Google Scholar
[9]
L. B. Loeb, A. F. Kip, G. G. Hudson and W. H. Bennett, Pulses in negative point-to plane corona, Phys. Rev., 60 (1941) 714-722.
DOI: 10.1103/physrev.60.714
Google Scholar
[10]
L. B. Loeb, The mechanism of the Trichel pulses of short time duration in air, Phys. Rev., 86 (1952) 256-257.
DOI: 10.1103/physrev.86.256
Google Scholar
[11]
W. L. Lama and C. F. Gallo, Systematic study of electrical characteristics of Trichel current pulses from negative needle-to-plane coronas, J. Appl. Phys., 45 (1974) 103-113.
DOI: 10.1063/1.1662943
Google Scholar
[12]
R. Morrow, Theory of negative corona in oxygen, Phys. Rev. A, 32 (1985) 1799-1809.
Google Scholar
[13]
A. P. Napartovich, Y. S. Akishev, A. A. Deryugin and I. V. Kochetov, A numerical simulation of Trichel-pulse formation in a negative corona, J. Phys. D: Appl. Phys., 30 (1997) 2726-2736.
DOI: 10.1088/0022-3727/30/19/011
Google Scholar
[14]
Y. S. Akishev, I. V. Kochetov, A. I. Loboiko and A. P. Napartovich, Numerical simulations of Trichel pulses in a negative corona in air, Plasma Phys. Rep., 28 (2002) 1049-1059.
DOI: 10.1134/1.1528237
Google Scholar
[15]
C. Soria-Hoyo, F. Pontiga and A. Castellanos, Paritcle-in-cell simulation of Trichel pulses in pure oxygen, J. Phys. D: Appl. Phys., 40 (2007) 4552-4560.
DOI: 10.1088/0022-3727/40/15/027
Google Scholar
[16]
T. N. Tran, I. O. Golosnoy, P. L. Lewin and G. E. Georghiou, Numerical modeling of negative discharges in air with experimental validation, J. Phys. D: Appl. Phys., 44 (2011) 015203.
DOI: 10.1088/0022-3727/44/1/015203
Google Scholar
[17]
P. Sattari, C. F. Gallo, G. Castle and K. Adamiak, Trichel pulse characteristics-negative corona discharge in air, J. Phys. D: Appl. Phys., 44 (2011) 155502.
DOI: 10.1088/0022-3727/44/15/155502
Google Scholar
[18]
E. Moreau, L. Leger and G. Touchard, Effect of a DC surface-corona discharge on a flat plate boundary layer for air flow velocity up to 25 m/s, J. Electrostat., 64 (2006) 215-225.
DOI: 10.1016/j.elstat.2005.05.009
Google Scholar
[19]
G. Vissokov, I. Grancharov and T. Tsvetanov, On the plasma-chemical synthesis of nanopowders, Plasma Sci. Technol., 5 (2003) 2039-(2050).
DOI: 10.1088/1009-0630/5/6/005
Google Scholar
[20]
H. A. Stone, A. D. Stroock and A. Ajdari, Engineering flows in small devices: microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid. Mech., 36 (2004) 381-411.
DOI: 10.1146/annurev.fluid.36.050802.122124
Google Scholar