Quantitative Production of Charges with a Carbon Nanotubes Coated Electrode Based on Trichel Pulses

Article Preview

Abstract:

This paper presents a novel method of quantitative production of charges with a carbon nanotubes (CNTs) coated electrode. It is based on the Trichel pulse (TP) discharge which is characterized as highly regular current pulses. The charge-per-pulse transported in the discharge gap is nearly constant for a given condition. The total charges produced in unit time are an integer times of charge-per-pulse. The amount of charges and production velocity can be easily and quantitatively controlled, which may be of importance for some particular applications, such as electro-fluid-dynamic (EFD) actuator, reaction control in plasma-chemical synthesis and lab-on-a-chip. The effects of humidity and temperature on the charge-per-pulse also have been experimentally investigated and extensively analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

92-97

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Carbon nanotubes-the route toward applications, Science, 297 (2002) 787-792.

DOI: 10.1126/science.1060928

Google Scholar

[3] S. Geier, T. Mahrholz, P. Wierach and M. Sinapius, Carbon nanotube array actuators, Smart Mater. Struct., 22 (2013) 94003.

DOI: 10.1088/0964-1726/22/9/094003

Google Scholar

[4] U. Kosidlo, M. Omastová, M. Micusík, G. Ćirić-Marjanović, H. Randriamahazaka, T. Wallmersperger, A. Aabloo, I. Kolaric and T. Bauernhansl, Smart Mater. Struct., 22 (2013) 104022.

DOI: 10.1088/0964-1726/22/10/104022

Google Scholar

[5] A, Modi, N. Koratkar, E. Lass, B. Q. Wei and P. M. Ajayan, Miniaturized gas ionization sensors using carbon nanotubes, Nature, 424 (2003) 171-174.

DOI: 10.1038/nature01777

Google Scholar

[6] J. S. Chang, P. A. Lawless and T. Yamamoto, Corona discharge processes, IEEE Trans. Plasma Sci., 19 (1991) 1152-1166.

DOI: 10.1109/27.125038

Google Scholar

[7] G. E. Georghiou, A. P. Papadakis, R. Morrow and A. C. Metaxas, Numerical modeling of atmospheric pressure gas discharges leading to plasma production, J. Phys. D: Appl. Phys., 38 (2005) 303-328.

DOI: 10.1088/0022-3727/38/20/r01

Google Scholar

[8] G. W. Trichel, The mechanism of the negative point to plane corona near onset, Phys. Rev., 54 (1938) 1078-1084.

DOI: 10.1103/physrev.54.1078

Google Scholar

[9] L. B. Loeb, A. F. Kip, G. G. Hudson and W. H. Bennett, Pulses in negative point-to plane corona, Phys. Rev., 60 (1941) 714-722.

DOI: 10.1103/physrev.60.714

Google Scholar

[10] L. B. Loeb, The mechanism of the Trichel pulses of short time duration in air, Phys. Rev., 86 (1952) 256-257.

DOI: 10.1103/physrev.86.256

Google Scholar

[11] W. L. Lama and C. F. Gallo, Systematic study of electrical characteristics of Trichel current pulses from negative needle-to-plane coronas, J. Appl. Phys., 45 (1974) 103-113.

DOI: 10.1063/1.1662943

Google Scholar

[12] R. Morrow, Theory of negative corona in oxygen, Phys. Rev. A, 32 (1985) 1799-1809.

Google Scholar

[13] A. P. Napartovich, Y. S. Akishev, A. A. Deryugin and I. V. Kochetov, A numerical simulation of Trichel-pulse formation in a negative corona, J. Phys. D: Appl. Phys., 30 (1997) 2726-2736.

DOI: 10.1088/0022-3727/30/19/011

Google Scholar

[14] Y. S. Akishev, I. V. Kochetov, A. I. Loboiko and A. P. Napartovich, Numerical simulations of Trichel pulses in a negative corona in air, Plasma Phys. Rep., 28 (2002) 1049-1059.

DOI: 10.1134/1.1528237

Google Scholar

[15] C. Soria-Hoyo, F. Pontiga and A. Castellanos, Paritcle-in-cell simulation of Trichel pulses in pure oxygen, J. Phys. D: Appl. Phys., 40 (2007) 4552-4560.

DOI: 10.1088/0022-3727/40/15/027

Google Scholar

[16] T. N. Tran, I. O. Golosnoy, P. L. Lewin and G. E. Georghiou, Numerical modeling of negative discharges in air with experimental validation, J. Phys. D: Appl. Phys., 44 (2011) 015203.

DOI: 10.1088/0022-3727/44/1/015203

Google Scholar

[17] P. Sattari, C. F. Gallo, G. Castle and K. Adamiak, Trichel pulse characteristics-negative corona discharge in air, J. Phys. D: Appl. Phys., 44 (2011) 155502.

DOI: 10.1088/0022-3727/44/15/155502

Google Scholar

[18] E. Moreau, L. Leger and G. Touchard, Effect of a DC surface-corona discharge on a flat plate boundary layer for air flow velocity up to 25 m/s, J. Electrostat., 64 (2006) 215-225.

DOI: 10.1016/j.elstat.2005.05.009

Google Scholar

[19] G. Vissokov, I. Grancharov and T. Tsvetanov, On the plasma-chemical synthesis of nanopowders, Plasma Sci. Technol., 5 (2003) 2039-(2050).

DOI: 10.1088/1009-0630/5/6/005

Google Scholar

[20] H. A. Stone, A. D. Stroock and A. Ajdari, Engineering flows in small devices: microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid. Mech., 36 (2004) 381-411.

DOI: 10.1146/annurev.fluid.36.050802.122124

Google Scholar